--- library_name: transformers license: apache-2.0 base_model: bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-multilingual-uncased-finetuned-ner-prostata results: [] --- # bert-base-multilingual-uncased-finetuned-ner-prostata This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0424 - Precision: 0.9601 - Recall: 0.9635 - F1: 0.9618 - Accuracy: 0.9935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 389 | 0.0228 | 0.9692 | 0.9773 | 0.9733 | 0.9952 | | 0.0266 | 2.0 | 778 | 0.0285 | 0.9733 | 0.9657 | 0.9695 | 0.9939 | | 0.0153 | 3.0 | 1167 | 0.0257 | 0.9817 | 0.9741 | 0.9779 | 0.9955 | | 0.014 | 4.0 | 1556 | 0.0285 | 0.9817 | 0.9728 | 0.9772 | 0.9950 | | 0.014 | 5.0 | 1945 | 0.0261 | 0.9761 | 0.9799 | 0.9780 | 0.9954 | | 0.0129 | 6.0 | 2334 | 0.0254 | 0.9818 | 0.9767 | 0.9792 | 0.9957 | | 0.0113 | 7.0 | 2723 | 0.0255 | 0.9844 | 0.9793 | 0.9818 | 0.9962 | | 0.0078 | 8.0 | 3112 | 0.0246 | 0.9812 | 0.9793 | 0.9802 | 0.9960 | | 0.0065 | 9.0 | 3501 | 0.0261 | 0.9850 | 0.9799 | 0.9825 | 0.9961 | | 0.0065 | 10.0 | 3890 | 0.0257 | 0.9838 | 0.9806 | 0.9822 | 0.9961 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1