File size: 2,404 Bytes
59fba67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
741dc51
59fba67
 
 
 
 
741dc51
5652645
741dc51
 
59fba67
 
5652645
59fba67
 
 
5652645
59fba67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5652645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: mit
base_model: gpt2
tags:
- generated_from_trainer
model-index:
- name: gpt2_finetuned_new_10000recipe_chicken
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gpt2_finetuned_new_10000recipe_chicken

This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) using 10,000 chicken recipes with no_duplicated titles extracted from nlg dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6760

## Model description

This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) using 10,000 chicken recipes extracted from nlg dataset. <br>
It achieves the following results on the evaluation set:
- Loss: 1.43510
  
## Intended uses & limitations

The use is for personal and educational purposes.

## Training and evaluation data

The model uses 10043 recipes for its training data and 100 recipes for its evaluation data.
## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.9414        | 1.0   | 2544 | 1.8198          |
| 1.6154        | 2.0   | 5088 | 1.7056          |
| 1.4351        | 3.0   | 7632 | 1.6760          |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cpu
- Datasets 2.14.4
- Tokenizers 0.11.0

### Reference

@inproceedings{bien-etal-2020-recipenlg,
    title = "{R}ecipe{NLG}: A Cooking Recipes Dataset for Semi-Structured Text Generation",
    author = "Bie{\'n}, Micha{\l}  and
      Gilski, Micha{\l}  and
      Maciejewska, Martyna  and
      Taisner, Wojciech  and
      Wisniewski, Dawid  and
      Lawrynowicz, Agnieszka",
    booktitle = "Proceedings of the 13th International Conference on Natural Language Generation",
    month = dec,
    year = "2020",
    address = "Dublin, Ireland",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.inlg-1.4",
    pages = "22--28",
}