updating the repo with the fine-tuned model
Browse files- README.md +85 -0
- all_results.json +7 -0
- classification_report +27 -0
- config.json +9 -9
- pytorch_model.bin +1 -1
- tokenizer_config.json +1 -1
- train_results.json +7 -0
- trainer_state.json +325 -0
- training_args.bin +2 -2
README.md
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- generated_from_trainer
|
| 5 |
+
metrics:
|
| 6 |
+
- precision
|
| 7 |
+
- recall
|
| 8 |
+
- f1
|
| 9 |
+
- accuracy
|
| 10 |
+
model-index:
|
| 11 |
+
- name: uwb_atcc
|
| 12 |
+
results: []
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 16 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 17 |
+
|
| 18 |
+
# uwb_atcc
|
| 19 |
+
|
| 20 |
+
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
|
| 21 |
+
It achieves the following results on the evaluation set:
|
| 22 |
+
- Loss: 0.0098
|
| 23 |
+
- Precision: 0.9760
|
| 24 |
+
- Recall: 0.9741
|
| 25 |
+
- F1: 0.9750
|
| 26 |
+
- Accuracy: 0.9965
|
| 27 |
+
|
| 28 |
+
## Model description
|
| 29 |
+
|
| 30 |
+
More information needed
|
| 31 |
+
|
| 32 |
+
## Intended uses & limitations
|
| 33 |
+
|
| 34 |
+
More information needed
|
| 35 |
+
|
| 36 |
+
## Training and evaluation data
|
| 37 |
+
|
| 38 |
+
More information needed
|
| 39 |
+
|
| 40 |
+
## Training procedure
|
| 41 |
+
|
| 42 |
+
### Training hyperparameters
|
| 43 |
+
|
| 44 |
+
The following hyperparameters were used during training:
|
| 45 |
+
- learning_rate: 5e-05
|
| 46 |
+
- train_batch_size: 64
|
| 47 |
+
- eval_batch_size: 16
|
| 48 |
+
- seed: 42
|
| 49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 50 |
+
- lr_scheduler_type: linear
|
| 51 |
+
- lr_scheduler_warmup_steps: 1000
|
| 52 |
+
- training_steps: 10000
|
| 53 |
+
|
| 54 |
+
### Training results
|
| 55 |
+
|
| 56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
| 57 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
| 58 |
+
| No log | 0.03 | 500 | 0.2282 | 0.6818 | 0.7001 | 0.6908 | 0.9246 |
|
| 59 |
+
| 0.3487 | 0.06 | 1000 | 0.1214 | 0.8163 | 0.8024 | 0.8093 | 0.9631 |
|
| 60 |
+
| 0.3487 | 0.1 | 1500 | 0.0933 | 0.8496 | 0.8544 | 0.8520 | 0.9722 |
|
| 61 |
+
| 0.1124 | 0.13 | 2000 | 0.0693 | 0.8845 | 0.8739 | 0.8791 | 0.9786 |
|
| 62 |
+
| 0.1124 | 0.16 | 2500 | 0.0540 | 0.8993 | 0.8911 | 0.8952 | 0.9817 |
|
| 63 |
+
| 0.0667 | 0.19 | 3000 | 0.0474 | 0.9058 | 0.8929 | 0.8993 | 0.9857 |
|
| 64 |
+
| 0.0667 | 0.23 | 3500 | 0.0418 | 0.9221 | 0.9245 | 0.9233 | 0.9865 |
|
| 65 |
+
| 0.0492 | 0.26 | 4000 | 0.0294 | 0.9369 | 0.9415 | 0.9392 | 0.9903 |
|
| 66 |
+
| 0.0492 | 0.29 | 4500 | 0.0263 | 0.9512 | 0.9446 | 0.9479 | 0.9911 |
|
| 67 |
+
| 0.0372 | 0.32 | 5000 | 0.0223 | 0.9495 | 0.9497 | 0.9496 | 0.9915 |
|
| 68 |
+
| 0.0372 | 0.35 | 5500 | 0.0212 | 0.9530 | 0.9514 | 0.9522 | 0.9923 |
|
| 69 |
+
| 0.0308 | 0.39 | 6000 | 0.0177 | 0.9585 | 0.9560 | 0.9572 | 0.9933 |
|
| 70 |
+
| 0.0308 | 0.42 | 6500 | 0.0169 | 0.9619 | 0.9613 | 0.9616 | 0.9936 |
|
| 71 |
+
| 0.0261 | 0.45 | 7000 | 0.0140 | 0.9689 | 0.9662 | 0.9676 | 0.9951 |
|
| 72 |
+
| 0.0261 | 0.48 | 7500 | 0.0130 | 0.9652 | 0.9629 | 0.9641 | 0.9945 |
|
| 73 |
+
| 0.0214 | 0.51 | 8000 | 0.0127 | 0.9676 | 0.9635 | 0.9656 | 0.9953 |
|
| 74 |
+
| 0.0214 | 0.55 | 8500 | 0.0109 | 0.9714 | 0.9708 | 0.9711 | 0.9959 |
|
| 75 |
+
| 0.0177 | 0.58 | 9000 | 0.0103 | 0.9740 | 0.9727 | 0.9734 | 0.9961 |
|
| 76 |
+
| 0.0177 | 0.61 | 9500 | 0.0101 | 0.9768 | 0.9744 | 0.9756 | 0.9963 |
|
| 77 |
+
| 0.0159 | 0.64 | 10000 | 0.0098 | 0.9760 | 0.9741 | 0.9750 | 0.9965 |
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
### Framework versions
|
| 81 |
+
|
| 82 |
+
- Transformers 4.24.0
|
| 83 |
+
- Pytorch 1.13.0+cu117
|
| 84 |
+
- Datasets 2.7.0
|
| 85 |
+
- Tokenizers 0.13.2
|
all_results.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 0.64,
|
| 3 |
+
"train_loss": 0.07261505832672119,
|
| 4 |
+
"train_runtime": 1985.8061,
|
| 5 |
+
"train_samples_per_second": 322.287,
|
| 6 |
+
"train_steps_per_second": 5.036
|
| 7 |
+
}
|
classification_report
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
************* Report B/I tags*************
|
| 2 |
+
precision recall f1-score support
|
| 3 |
+
|
| 4 |
+
B-atco 0.83 0.81 0.82 1356
|
| 5 |
+
B-pilot 0.79 0.89 0.83 1653
|
| 6 |
+
I-atco 0.95 0.90 0.93 13501
|
| 7 |
+
I-pilot 0.89 0.92 0.90 10216
|
| 8 |
+
|
| 9 |
+
accuracy 0.91 26726
|
| 10 |
+
macro avg 0.86 0.88 0.87 26726
|
| 11 |
+
weighted avg 0.91 0.91 0.91 26726
|
| 12 |
+
|
| 13 |
+
************ Report with merged classes ***********
|
| 14 |
+
precision recall f1-score support
|
| 15 |
+
|
| 16 |
+
atco 0.94 0.90 0.92 14857
|
| 17 |
+
pilot 0.88 0.93 0.90 11869
|
| 18 |
+
|
| 19 |
+
accuracy 0.91 26726
|
| 20 |
+
macro avg 0.91 0.91 0.91 26726
|
| 21 |
+
weighted avg 0.91 0.91 0.91 26726
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
JACCARD ERROR RATE (JER): [30.08233059 28.35603113 13.8444178 17.4533672 ]
|
| 25 |
+
JER - WEIGHTED : 16.945343251112565
|
| 26 |
+
|
| 27 |
+
|
config.json
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
{
|
| 2 |
-
"_name_or_path": "experiments/
|
| 3 |
"architectures": [
|
| 4 |
"BertForTokenClassification"
|
| 5 |
],
|
|
@@ -10,20 +10,20 @@
|
|
| 10 |
"hidden_dropout_prob": 0.1,
|
| 11 |
"hidden_size": 768,
|
| 12 |
"id2label": {
|
| 13 |
-
"0": "
|
| 14 |
-
"1": "
|
| 15 |
"2": "B-atco",
|
| 16 |
-
"3": "
|
| 17 |
-
"4": "
|
| 18 |
},
|
| 19 |
"initializer_range": 0.02,
|
| 20 |
"intermediate_size": 3072,
|
| 21 |
"label2id": {
|
| 22 |
"B-atco": 2,
|
| 23 |
-
"B-pilot":
|
| 24 |
-
"I-atco":
|
| 25 |
-
"I-pilot":
|
| 26 |
-
"O":
|
| 27 |
},
|
| 28 |
"layer_norm_eps": 1e-12,
|
| 29 |
"max_position_embeddings": 512,
|
|
|
|
| 1 |
{
|
| 2 |
+
"_name_or_path": "experiments/for_hf/bert-base-uncased/1234/uwb_atcc//",
|
| 3 |
"architectures": [
|
| 4 |
"BertForTokenClassification"
|
| 5 |
],
|
|
|
|
| 10 |
"hidden_dropout_prob": 0.1,
|
| 11 |
"hidden_size": 768,
|
| 12 |
"id2label": {
|
| 13 |
+
"0": "O",
|
| 14 |
+
"1": "B-pilot",
|
| 15 |
"2": "B-atco",
|
| 16 |
+
"3": "I-pilot",
|
| 17 |
+
"4": "I-atco"
|
| 18 |
},
|
| 19 |
"initializer_range": 0.02,
|
| 20 |
"intermediate_size": 3072,
|
| 21 |
"label2id": {
|
| 22 |
"B-atco": 2,
|
| 23 |
+
"B-pilot": 1,
|
| 24 |
+
"I-atco": 4,
|
| 25 |
+
"I-pilot": 3,
|
| 26 |
+
"O": 0
|
| 27 |
},
|
| 28 |
"layer_norm_eps": 1e-12,
|
| 29 |
"max_position_embeddings": 512,
|
pytorch_model.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 435651309
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3046900d4cc6ddf1e891841510afdfa4c0c486f6e2c9519fd11ec583496f5f67
|
| 3 |
size 435651309
|
tokenizer_config.json
CHANGED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
"do_lower_case": true,
|
| 4 |
"mask_token": "[MASK]",
|
| 5 |
"model_max_length": 512,
|
| 6 |
-
"name_or_path": "experiments/
|
| 7 |
"pad_token": "[PAD]",
|
| 8 |
"sep_token": "[SEP]",
|
| 9 |
"special_tokens_map_file": null,
|
|
|
|
| 3 |
"do_lower_case": true,
|
| 4 |
"mask_token": "[MASK]",
|
| 5 |
"model_max_length": 512,
|
| 6 |
+
"name_or_path": "experiments/for_hf/bert-base-uncased/1234/uwb_atcc//",
|
| 7 |
"pad_token": "[PAD]",
|
| 8 |
"sep_token": "[SEP]",
|
| 9 |
"special_tokens_map_file": null,
|
train_results.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 0.64,
|
| 3 |
+
"train_loss": 0.07261505832672119,
|
| 4 |
+
"train_runtime": 1985.8061,
|
| 5 |
+
"train_samples_per_second": 322.287,
|
| 6 |
+
"train_steps_per_second": 5.036
|
| 7 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 0.6432109088570143,
|
| 5 |
+
"global_step": 10000,
|
| 6 |
+
"is_hyper_param_search": false,
|
| 7 |
+
"is_local_process_zero": true,
|
| 8 |
+
"is_world_process_zero": true,
|
| 9 |
+
"log_history": [
|
| 10 |
+
{
|
| 11 |
+
"epoch": 0.03,
|
| 12 |
+
"eval_accuracy": 0.9246465960844621,
|
| 13 |
+
"eval_f1": 0.6907879797138747,
|
| 14 |
+
"eval_loss": 0.22821231186389923,
|
| 15 |
+
"eval_precision": 0.6817570596145226,
|
| 16 |
+
"eval_recall": 0.7000613685179503,
|
| 17 |
+
"eval_runtime": 6.5662,
|
| 18 |
+
"eval_samples_per_second": 761.48,
|
| 19 |
+
"eval_steps_per_second": 47.669,
|
| 20 |
+
"step": 500
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"epoch": 0.06,
|
| 24 |
+
"learning_rate": 5e-05,
|
| 25 |
+
"loss": 0.3487,
|
| 26 |
+
"step": 1000
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"epoch": 0.06,
|
| 30 |
+
"eval_accuracy": 0.9631217838765008,
|
| 31 |
+
"eval_f1": 0.809284332688588,
|
| 32 |
+
"eval_loss": 0.12138580530881882,
|
| 33 |
+
"eval_precision": 0.8162946776962697,
|
| 34 |
+
"eval_recall": 0.8023933722000613,
|
| 35 |
+
"eval_runtime": 6.1509,
|
| 36 |
+
"eval_samples_per_second": 812.889,
|
| 37 |
+
"eval_steps_per_second": 50.887,
|
| 38 |
+
"step": 1000
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"epoch": 0.1,
|
| 42 |
+
"eval_accuracy": 0.972200863547643,
|
| 43 |
+
"eval_f1": 0.8519850072668859,
|
| 44 |
+
"eval_loss": 0.09331324696540833,
|
| 45 |
+
"eval_precision": 0.849580472921434,
|
| 46 |
+
"eval_recall": 0.8544031911629334,
|
| 47 |
+
"eval_runtime": 6.1413,
|
| 48 |
+
"eval_samples_per_second": 814.163,
|
| 49 |
+
"eval_steps_per_second": 50.967,
|
| 50 |
+
"step": 1500
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"epoch": 0.13,
|
| 54 |
+
"learning_rate": 4.4444444444444447e-05,
|
| 55 |
+
"loss": 0.1124,
|
| 56 |
+
"step": 2000
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"epoch": 0.13,
|
| 60 |
+
"eval_accuracy": 0.9786478973206364,
|
| 61 |
+
"eval_f1": 0.879148016669239,
|
| 62 |
+
"eval_loss": 0.06928630918264389,
|
| 63 |
+
"eval_precision": 0.884472049689441,
|
| 64 |
+
"eval_recall": 0.873887695612151,
|
| 65 |
+
"eval_runtime": 6.1606,
|
| 66 |
+
"eval_samples_per_second": 811.616,
|
| 67 |
+
"eval_steps_per_second": 50.807,
|
| 68 |
+
"step": 2000
|
| 69 |
+
},
|
| 70 |
+
{
|
| 71 |
+
"epoch": 0.16,
|
| 72 |
+
"eval_accuracy": 0.9816939729106288,
|
| 73 |
+
"eval_f1": 0.8951911220715166,
|
| 74 |
+
"eval_loss": 0.05397827923297882,
|
| 75 |
+
"eval_precision": 0.899349643852586,
|
| 76 |
+
"eval_recall": 0.8910708806382326,
|
| 77 |
+
"eval_runtime": 6.3033,
|
| 78 |
+
"eval_samples_per_second": 793.233,
|
| 79 |
+
"eval_steps_per_second": 49.656,
|
| 80 |
+
"step": 2500
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"epoch": 0.19,
|
| 84 |
+
"learning_rate": 3.888888888888889e-05,
|
| 85 |
+
"loss": 0.0667,
|
| 86 |
+
"step": 3000
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"epoch": 0.19,
|
| 90 |
+
"eval_accuracy": 0.9856568285325604,
|
| 91 |
+
"eval_f1": 0.8993278219887197,
|
| 92 |
+
"eval_loss": 0.0473916195333004,
|
| 93 |
+
"eval_precision": 0.9058365758754864,
|
| 94 |
+
"eval_recall": 0.8929119361767414,
|
| 95 |
+
"eval_runtime": 6.1626,
|
| 96 |
+
"eval_samples_per_second": 811.344,
|
| 97 |
+
"eval_steps_per_second": 50.79,
|
| 98 |
+
"step": 3000
|
| 99 |
+
},
|
| 100 |
+
{
|
| 101 |
+
"epoch": 0.23,
|
| 102 |
+
"eval_accuracy": 0.9864553143668303,
|
| 103 |
+
"eval_f1": 0.9233126484333103,
|
| 104 |
+
"eval_loss": 0.04179921746253967,
|
| 105 |
+
"eval_precision": 0.9221117061973986,
|
| 106 |
+
"eval_recall": 0.9245167229211415,
|
| 107 |
+
"eval_runtime": 6.1411,
|
| 108 |
+
"eval_samples_per_second": 814.192,
|
| 109 |
+
"eval_steps_per_second": 50.968,
|
| 110 |
+
"step": 3500
|
| 111 |
+
},
|
| 112 |
+
{
|
| 113 |
+
"epoch": 0.26,
|
| 114 |
+
"learning_rate": 3.3333333333333335e-05,
|
| 115 |
+
"loss": 0.0492,
|
| 116 |
+
"step": 4000
|
| 117 |
+
},
|
| 118 |
+
{
|
| 119 |
+
"epoch": 0.26,
|
| 120 |
+
"eval_accuracy": 0.9902850890163838,
|
| 121 |
+
"eval_f1": 0.9392408937863483,
|
| 122 |
+
"eval_loss": 0.02944410778582096,
|
| 123 |
+
"eval_precision": 0.9369465648854962,
|
| 124 |
+
"eval_recall": 0.9415464866523473,
|
| 125 |
+
"eval_runtime": 6.1192,
|
| 126 |
+
"eval_samples_per_second": 817.096,
|
| 127 |
+
"eval_steps_per_second": 51.15,
|
| 128 |
+
"step": 4000
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"epoch": 0.29,
|
| 132 |
+
"eval_accuracy": 0.9910687880759449,
|
| 133 |
+
"eval_f1": 0.9478869986914018,
|
| 134 |
+
"eval_loss": 0.026342397555708885,
|
| 135 |
+
"eval_precision": 0.9511818322261703,
|
| 136 |
+
"eval_recall": 0.944614912549862,
|
| 137 |
+
"eval_runtime": 6.3093,
|
| 138 |
+
"eval_samples_per_second": 792.485,
|
| 139 |
+
"eval_steps_per_second": 49.61,
|
| 140 |
+
"step": 4500
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"epoch": 0.32,
|
| 144 |
+
"learning_rate": 2.777777777777778e-05,
|
| 145 |
+
"loss": 0.0372,
|
| 146 |
+
"step": 5000
|
| 147 |
+
},
|
| 148 |
+
{
|
| 149 |
+
"epoch": 0.32,
|
| 150 |
+
"eval_accuracy": 0.9915419648666233,
|
| 151 |
+
"eval_f1": 0.9496049704686661,
|
| 152 |
+
"eval_loss": 0.022303204983472824,
|
| 153 |
+
"eval_precision": 0.9495321368308023,
|
| 154 |
+
"eval_recall": 0.949677815280761,
|
| 155 |
+
"eval_runtime": 6.0806,
|
| 156 |
+
"eval_samples_per_second": 822.284,
|
| 157 |
+
"eval_steps_per_second": 51.475,
|
| 158 |
+
"step": 5000
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"epoch": 0.35,
|
| 162 |
+
"eval_accuracy": 0.9923256639261844,
|
| 163 |
+
"eval_f1": 0.9521689059500958,
|
| 164 |
+
"eval_loss": 0.02121582068502903,
|
| 165 |
+
"eval_precision": 0.9529737206085753,
|
| 166 |
+
"eval_recall": 0.951365449524394,
|
| 167 |
+
"eval_runtime": 6.1313,
|
| 168 |
+
"eval_samples_per_second": 815.488,
|
| 169 |
+
"eval_steps_per_second": 51.05,
|
| 170 |
+
"step": 5500
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"epoch": 0.39,
|
| 174 |
+
"learning_rate": 2.2222222222222223e-05,
|
| 175 |
+
"loss": 0.0308,
|
| 176 |
+
"step": 6000
|
| 177 |
+
},
|
| 178 |
+
{
|
| 179 |
+
"epoch": 0.39,
|
| 180 |
+
"eval_accuracy": 0.993331164606376,
|
| 181 |
+
"eval_f1": 0.9572163760657499,
|
| 182 |
+
"eval_loss": 0.01765192300081253,
|
| 183 |
+
"eval_precision": 0.9584679280110752,
|
| 184 |
+
"eval_recall": 0.9559680883706658,
|
| 185 |
+
"eval_runtime": 6.2521,
|
| 186 |
+
"eval_samples_per_second": 799.734,
|
| 187 |
+
"eval_steps_per_second": 50.063,
|
| 188 |
+
"step": 6000
|
| 189 |
+
},
|
| 190 |
+
{
|
| 191 |
+
"epoch": 0.42,
|
| 192 |
+
"eval_accuracy": 0.9936269001005501,
|
| 193 |
+
"eval_f1": 0.9616329036218538,
|
| 194 |
+
"eval_loss": 0.016909204423427582,
|
| 195 |
+
"eval_precision": 0.9619281547436291,
|
| 196 |
+
"eval_recall": 0.9613378336913163,
|
| 197 |
+
"eval_runtime": 6.055,
|
| 198 |
+
"eval_samples_per_second": 825.759,
|
| 199 |
+
"eval_steps_per_second": 51.693,
|
| 200 |
+
"step": 6500
|
| 201 |
+
},
|
| 202 |
+
{
|
| 203 |
+
"epoch": 0.45,
|
| 204 |
+
"learning_rate": 1.6666666666666667e-05,
|
| 205 |
+
"loss": 0.0261,
|
| 206 |
+
"step": 7000
|
| 207 |
+
},
|
| 208 |
+
{
|
| 209 |
+
"epoch": 0.45,
|
| 210 |
+
"eval_accuracy": 0.9951055775714202,
|
| 211 |
+
"eval_f1": 0.9675833461361193,
|
| 212 |
+
"eval_loss": 0.013973040506243706,
|
| 213 |
+
"eval_precision": 0.9689230769230769,
|
| 214 |
+
"eval_recall": 0.9662473151273396,
|
| 215 |
+
"eval_runtime": 6.0884,
|
| 216 |
+
"eval_samples_per_second": 821.237,
|
| 217 |
+
"eval_steps_per_second": 51.409,
|
| 218 |
+
"step": 7000
|
| 219 |
+
},
|
| 220 |
+
{
|
| 221 |
+
"epoch": 0.48,
|
| 222 |
+
"eval_accuracy": 0.9945436801324895,
|
| 223 |
+
"eval_f1": 0.9640552995391705,
|
| 224 |
+
"eval_loss": 0.013004946522414684,
|
| 225 |
+
"eval_precision": 0.9652414641648723,
|
| 226 |
+
"eval_recall": 0.9628720466400736,
|
| 227 |
+
"eval_runtime": 6.2303,
|
| 228 |
+
"eval_samples_per_second": 802.527,
|
| 229 |
+
"eval_steps_per_second": 50.238,
|
| 230 |
+
"step": 7500
|
| 231 |
+
},
|
| 232 |
+
{
|
| 233 |
+
"epoch": 0.51,
|
| 234 |
+
"learning_rate": 1.1111111111111112e-05,
|
| 235 |
+
"loss": 0.0214,
|
| 236 |
+
"step": 8000
|
| 237 |
+
},
|
| 238 |
+
{
|
| 239 |
+
"epoch": 0.51,
|
| 240 |
+
"eval_accuracy": 0.9952534453185071,
|
| 241 |
+
"eval_f1": 0.965559655596556,
|
| 242 |
+
"eval_loss": 0.01268522348254919,
|
| 243 |
+
"eval_precision": 0.9676425269645609,
|
| 244 |
+
"eval_recall": 0.9634857318195765,
|
| 245 |
+
"eval_runtime": 6.0895,
|
| 246 |
+
"eval_samples_per_second": 821.082,
|
| 247 |
+
"eval_steps_per_second": 51.4,
|
| 248 |
+
"step": 8000
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"epoch": 0.55,
|
| 252 |
+
"eval_accuracy": 0.9958744898562726,
|
| 253 |
+
"eval_f1": 0.971147943523634,
|
| 254 |
+
"eval_loss": 0.010873218066990376,
|
| 255 |
+
"eval_precision": 0.9714461160577218,
|
| 256 |
+
"eval_recall": 0.9708499539736115,
|
| 257 |
+
"eval_runtime": 6.1229,
|
| 258 |
+
"eval_samples_per_second": 816.611,
|
| 259 |
+
"eval_steps_per_second": 51.12,
|
| 260 |
+
"step": 8500
|
| 261 |
+
},
|
| 262 |
+
{
|
| 263 |
+
"epoch": 0.58,
|
| 264 |
+
"learning_rate": 5.555555555555556e-06,
|
| 265 |
+
"loss": 0.0177,
|
| 266 |
+
"step": 9000
|
| 267 |
+
},
|
| 268 |
+
{
|
| 269 |
+
"epoch": 0.58,
|
| 270 |
+
"eval_accuracy": 0.9961406518010292,
|
| 271 |
+
"eval_f1": 0.9733630152759652,
|
| 272 |
+
"eval_loss": 0.010330266319215298,
|
| 273 |
+
"eval_precision": 0.9740359502227685,
|
| 274 |
+
"eval_recall": 0.9726910095121203,
|
| 275 |
+
"eval_runtime": 6.0936,
|
| 276 |
+
"eval_samples_per_second": 820.536,
|
| 277 |
+
"eval_steps_per_second": 51.366,
|
| 278 |
+
"step": 9000
|
| 279 |
+
},
|
| 280 |
+
{
|
| 281 |
+
"epoch": 0.61,
|
| 282 |
+
"eval_accuracy": 0.9963328798722423,
|
| 283 |
+
"eval_f1": 0.9755760368663594,
|
| 284 |
+
"eval_loss": 0.010118774138391018,
|
| 285 |
+
"eval_precision": 0.9767763764995386,
|
| 286 |
+
"eval_recall": 0.9743786437557533,
|
| 287 |
+
"eval_runtime": 6.2563,
|
| 288 |
+
"eval_samples_per_second": 799.199,
|
| 289 |
+
"eval_steps_per_second": 50.03,
|
| 290 |
+
"step": 9500
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"epoch": 0.64,
|
| 294 |
+
"learning_rate": 0.0,
|
| 295 |
+
"loss": 0.0159,
|
| 296 |
+
"step": 10000
|
| 297 |
+
},
|
| 298 |
+
{
|
| 299 |
+
"epoch": 0.64,
|
| 300 |
+
"eval_accuracy": 0.9965251079434554,
|
| 301 |
+
"eval_f1": 0.9750441526529986,
|
| 302 |
+
"eval_loss": 0.009783624671399593,
|
| 303 |
+
"eval_precision": 0.9760184473481937,
|
| 304 |
+
"eval_recall": 0.9740718011660019,
|
| 305 |
+
"eval_runtime": 6.0731,
|
| 306 |
+
"eval_samples_per_second": 823.307,
|
| 307 |
+
"eval_steps_per_second": 51.539,
|
| 308 |
+
"step": 10000
|
| 309 |
+
},
|
| 310 |
+
{
|
| 311 |
+
"epoch": 0.64,
|
| 312 |
+
"step": 10000,
|
| 313 |
+
"total_flos": 2.25374565312e+16,
|
| 314 |
+
"train_loss": 0.07261505832672119,
|
| 315 |
+
"train_runtime": 1985.8061,
|
| 316 |
+
"train_samples_per_second": 322.287,
|
| 317 |
+
"train_steps_per_second": 5.036
|
| 318 |
+
}
|
| 319 |
+
],
|
| 320 |
+
"max_steps": 10000,
|
| 321 |
+
"num_train_epochs": 1,
|
| 322 |
+
"total_flos": 2.25374565312e+16,
|
| 323 |
+
"trial_name": null,
|
| 324 |
+
"trial_params": null
|
| 325 |
+
}
|
training_args.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2f1e174eb0134e9ea6d50af2aeb815175787e869220991a36ce7eeb1be2851c9
|
| 3 |
+
size 3387
|