adaamko commited on
Commit
2bde2af
·
verified ·
1 Parent(s): 60542ad

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -167
README.md CHANGED
@@ -1,199 +1,117 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
 
9
 
 
10
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
91
 
 
92
 
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
 
163
- #### Hardware
 
 
 
164
 
165
- [More Information Needed]
166
 
167
- #### Software
 
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
 
 
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
 
 
 
 
 
 
 
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
 
190
 
191
- [More Information Needed]
 
 
 
192
 
193
- ## Model Card Authors [optional]
 
 
 
 
 
 
 
 
 
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ base_model:
6
+ - jhu-clsp/ettin-encoder-32m
7
+ pipeline_tag: token-classification
8
+ tags:
9
+ - token classification
10
+ - hallucination detection
11
+ - retrieval-augmented generation
12
+ - transformers
13
+ - ettin
14
+ - lightweight
15
+ datasets:
16
+ - enelpol/rag-mini-bioasq
17
  library_name: transformers
 
18
  ---
19
 
20
+ # TinyLettuce (Ettin-32M): Efficient Hallucination Detection
21
 
22
+ <p align="center">
23
+ <img src="https://github.com/KRLabsOrg/LettuceDetect/blob/main/assets/tinytinylettuce.png?raw=true" alt="TinyLettuce" width="400"/>
24
+ </p>
25
 
26
+ **Model Name:** tinylettuce-ettin-32m-en-v1
27
 
28
+ **Organization:** KRLabsOrg
29
 
30
+ **Github:** https://github.com/KRLabsOrg/LettuceDetect
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
+ **Ettin encoders:** https://arxiv.org/pdf/2507.11412
33
 
34
+ ## Overview
35
 
36
+ TinyLettuce is a token‑classification model that flags unsupported spans in answers given context. The 32M Ettin variant balances accuracy and CPU‑side efficiency; it’s designed for low‑cost domain fine‑tuning on synthetic data.
37
 
38
+ Trained on our synthetic dataset (mixed with RAGTruth), this 32M variant achieves 88.76% F1 on the held‑out synthetic test set (beating large-scale LLM judges like GPT-OSS-120b), proving the effectiveness of our domain‑specific hallucination data generation pipeline.
39
 
40
+ ## Model Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
+ - Architecture: Ettin encoder (32M) + token‑classification head
43
+ - Task: token classification (0 = supported, 1 = hallucinated)
44
+ - Input: [CLS] context [SEP] question [SEP] answer [SEP], up to 4096 tokens
45
+ - Language: English; License: MIT
46
 
47
+ ## Training Data
48
 
49
+ - Synthetic (train): ~1,500 hallucinated samples (≈3,000 with non‑hallucinated) from enelpol/rag-mini-bioasq; intensity 0.3.
50
+ - Synthetic (test): 300 hallucinated samples (≈600 total) held out.
51
 
52
+ ## Training Procedure
53
 
54
+ - Tokenizer: AutoTokenizer; DataCollatorForTokenClassification; label pad −100
55
+ - Max length: 4096; batch size: 8; epochs: 3
56
+ - Optimizer: AdamW (lr 1e‑5, weight_decay 0.01)
57
+ - Hardware: Single A100 80GB
58
 
59
+ ## Results
60
 
61
+ Synthetic (domain‑specific):
62
 
63
+ | Model | Parameters | Precision (%) | Recall (%) | F1 (%) | Hardware |
64
+ |-------|------------|---------------|------------|--------|----------|
65
+ | TinyLettuce-17M | 17M | 84.56 | 98.21 | 90.87 | CPU |
66
+ | **TinyLettuce-32M** | 32M | 80.36 | 99.10 | 88.76 | CPU |
67
+ | TinyLettuce-68M | 68M | 89.54 | 95.96 | 92.64 | CPU |
68
+ | GPT-5-mini | ~200B | 71.95 | 100.00 | 83.69 | API/GPU |
69
+ | GPT-OSS-120B | 120B | 72.21 | 98.64 | 83.38 | GPU |
70
+ | Qwen3-235B | 235B | 66.74 | 99.32 | 79.84 | GPU |
71
 
 
72
 
73
+ ## Usage
74
 
75
+ First install lettucedetect:
76
 
77
+ ```bash
78
+ pip install lettucedetect
79
+ ```
80
 
81
+ Then use it:
82
 
83
+ ```python
84
+ from lettucedetect.models.inference import HallucinationDetector
85
 
86
+ detector = HallucinationDetector(
87
+ method="transformer",
88
+ model_path="KRLabsOrg/tinylettuce-ettin-32m-en-v1",
89
+ )
90
 
91
+ spans = detector.predict(
92
+ context=[
93
+ "Ibuprofen is an NSAID that reduces inflammation and pain. The typical adult dose is 400-600mg every 6-8 hours, not exceeding 2400mg daily."
94
+ ],
95
+ question="What is the maximum daily dose of ibuprofen?",
96
+ answer="The maximum daily dose of ibuprofen for adults is 3200mg.",
97
+ output_format="spans",
98
+ )
99
+ print(spans)
100
+ # Output: [{"start": 51, "end": 57, "text": "3200mg"}]
101
+ ```
102
 
103
+ ## Citing
104
 
105
+ If you use the model or the tool, please cite the following paper:
106
 
107
+ ```bibtex
108
+ @misc{Kovacs:2025,
109
+ title={LettuceDetect: A Hallucination Detection Framework for RAG Applications},
110
+ author={Ádám Kovács and Gábor Recski},
111
+ year={2025},
112
+ eprint={2502.17125},
113
+ archivePrefix={arXiv},
114
+ primaryClass={cs.CL},
115
+ url={https://arxiv.org/abs/2502.17125},
116
+ }
117
+ ```