adaamko commited on
Commit
be984e6
·
verified ·
1 Parent(s): f6c37a8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -168
README.md CHANGED
@@ -1,199 +1,115 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
 
9
 
 
10
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
91
 
 
 
92
 
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
 
163
- #### Hardware
 
 
 
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
 
 
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
 
 
 
 
 
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
 
190
 
191
- [More Information Needed]
 
 
 
192
 
193
- ## Model Card Authors [optional]
 
 
 
 
 
 
 
 
 
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ base_model:
6
+ - jhu-clsp/ettin-encoder-68m
7
+ pipeline_tag: token-classification
8
+ tags:
9
+ - token classification
10
+ - hallucination detection
11
+ - retrieval-augmented generation
12
+ - transformers
13
+ - ettin
14
+ - lightweight
15
+ datasets:
16
+ - ragtruth
17
+ - KRLabsOrg/rag-bioasq-lettucedetect
18
  library_name: transformers
 
19
  ---
20
 
21
+ # TinyLettuce (Ettin-68M): Efficient Hallucination Detection
22
 
23
+ <p align="center">
24
+ <img src="https://github.com/KRLabsOrg/LettuceDetect/blob/dev/assets/tinytinylettuce.png?raw=true" alt="TinyLettuce" width="400"/>
25
+ </p>
26
 
27
+ **Model Name:** tinylettuce-ettin-68m-en
28
 
29
+ **Organization:** KRLabsOrg
30
 
31
+ **Github:** https://github.com/KRLabsOrg/LettuceDetect
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
+ **Ettin encoders:** https://arxiv.org/pdf/2507.11412
34
 
35
+ ## Overview
36
 
37
+ TinyLettuce is a lightweight token‑classification model that flags unsupported spans in answers given context (span aggregation performed downstream). Built on the 68M Ettin encoder, it targets real‑time CPU inference and low‑cost domain fine‑tuning.
38
+ This variant is trained only on our synthetic data and RAGTruth dataset for hallucination detection, using the 68M Ettin encoder and a token‑classification head. Highest accuracy among TinyLettuce sizes, works great given it's size (74.97% vs 76.07 LettuceDetect-ModernBERT-base); optimized for efficient CPU inference.
39
 
40
+ ## Model Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
+ - Architecture: Ettin encoder (68M) + token‑classification head
43
+ - Task: token classification (0 = supported, 1 = hallucinated)
44
+ - Input: [CLS] context [SEP] question [SEP] answer [SEP], up to 4096 tokens
45
+ - Language: English; License: MIT
46
 
47
+ ## Training Data
48
 
49
+ - RAGTruth (English), span‑level labels; no synthetic data mixed
50
 
51
+ ## Training Procedure
52
 
53
+ - Tokenizer: AutoTokenizer; DataCollatorForTokenClassification; label pad −100
54
+ - Max length: 4096; batch size: 8; epochs: 3–6
55
+ - Optimizer: AdamW (lr 1e‑5, weight_decay 0.01)
56
+ - Hardware: Single A100 80GB
57
 
58
+ ## Results (RAGTruth)
59
 
60
+ This model is designed primarily for fine-tuning on smaller, domain-specific samples, rather than for general use.
61
 
62
+ Performs well on the RAGTruth benchmark, coming close to our LettuceDetect-base (150m ModernBERT) model.
63
 
64
+ | Model | Parameters | F1 (%) |
65
+ |-------|------------|--------|
66
+ | **TinyLettuce-68M** | 68M | **74.97** |
67
+ | LettuceDetect-base (ModernBERT) | 150M | 76.07 |
68
+ | LettuceDetect-large (ModernBERT) | 395M | 79.22 |
69
+ | Llama-2-13B (RAGTruth FT) | 13B | 78.70 |
70
 
71
+ ## Usage
72
 
73
+ First install lettucedetect:
74
 
75
+ ```bash
76
+ pip install lettucedetect
77
+ ```
78
 
79
+ Then use it:
80
 
81
+ ```python
82
+ from lettucedetect.models.inference import HallucinationDetector
83
 
84
+ detector = HallucinationDetector(
85
+ method="transformer",
86
+ model_path="KRLabsOrg/tinylettuce-ettin-68m-en",
87
+ )
88
 
89
+ spans = detector.predict(
90
+ context=[
91
+ "Ibuprofen is an NSAID that reduces inflammation and pain. The typical adult dose is 400-600mg every 6-8 hours, not exceeding 2400mg daily."
92
+ ],
93
+ question="What is the maximum daily dose of ibuprofen?",
94
+ answer="The maximum daily dose of ibuprofen for adults is 3200mg.",
95
+ output_format="spans",
96
+ )
97
+ print(spans)
98
+ # Output: [{"start": 51, "end": 57, "text": "3200mg"}]
99
+ ```
100
 
101
+ ## Citing
102
 
103
+ If you use the model or the tool, please cite the following paper:
104
 
105
+ ```bibtex
106
+ @misc{Kovacs:2025,
107
+ title={LettuceDetect: A Hallucination Detection Framework for RAG Applications},
108
+ author={Ádám Kovács and Gábor Recski},
109
+ year={2025},
110
+ eprint={2502.17125},
111
+ archivePrefix={arXiv},
112
+ primaryClass={cs.CL},
113
+ url={https://arxiv.org/abs/2502.17125},
114
+ }
115
+ ```