--- library_name: transformers tags: - generated_from_trainer metrics: - accuracy - f1 - precision model-index: - name: bert-distill_emotion_ft_0531 results: [] --- # bert-distill_emotion_ft_0531 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5863 - Accuracy: 0.8 - F1: 0.7620 - Precision: 0.6746 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 512 - eval_batch_size: 512 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:| | No log | 1.0 | 32 | 1.0948 | 0.5905 | 0.4619 | 0.3647 | | No log | 2.0 | 64 | 0.8247 | 0.7195 | 0.6613 | 0.6385 | | No log | 3.0 | 96 | 0.6437 | 0.7805 | 0.7343 | 0.6801 | | No log | 4.0 | 128 | 0.5863 | 0.8 | 0.7620 | 0.6746 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.7.0+cu126 - Datasets 3.6.0 - Tokenizers 0.21.1