metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:1979
- loss:MultipleNegativesRankingLoss
base_model: google/embeddinggemma-300m
widget:
- source_sentence: The iPhone Bluetooth connection drops unexpectedly during use.
sentences:
- The customer is asking how to update apps on their iPhone automatically.
- >-
The device loses power quickly despite showing a 100% battery level
earlier.
- Bluetooth devices disconnect frequently when paired with the iPhone.
- source_sentence: >-
The crash in the cloud service happened when the authentication module
failed to process tokens correctly.
sentences:
- >-
During the parade, the crash of a float startled the spectators but
caused no injuries.
- Cross-platform contact synchronization failed in the application.
- >-
Engineers fixed the crash by patching the token validation algorithm
causing the server to terminate.
- source_sentence: Atlassian Confluence is often used for internal company wikis.
sentences:
- >-
Many organizations rely on Confluence to maintain up-to-date internal
knowledge bases.
- Threading in Slack helps prevent important messages from getting lost.
- >-
Confluence users sometimes face performance issues when integrating with
third-party plugins, causing delays in page loading and editing.
- source_sentence: >-
Windows supports file system formats like NTFS and FAT32 for data storage
management.
sentences:
- Network-stored PDFs cause Adobe Acrobat to shut down unexpectedly.
- >-
Windows users often face network connectivity issues that prevent access
to shared drives, unrelated to file system formats like NTFS or FAT32.
- >-
Converting drives between NTFS and FAT32 is common in Windows for
compatibility reasons.
- source_sentence: Tableau can be extended with Python or R for advanced analytics.
sentences:
- >-
Data scientists integrate Tableau with external scripts to enhance
visualizations.
- By using ServiceNow, companies reduce manual work through automation.
- >-
The system administrator troubleshoots network latency issues affecting
server performance.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
SentenceTransformer based on google/embeddinggemma-300m
This is a sentence-transformers model finetuned from google/embeddinggemma-300m on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google/embeddinggemma-300m
- Maximum Sequence Length: 2048 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False, 'architecture': 'Gemma3TextModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 3072, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(3): Dense({'in_features': 3072, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(4): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
queries = [
"Tableau can be extended with Python or R for advanced analytics.",
]
documents = [
'Data scientists integrate Tableau with external scripts to enhance visualizations.',
'The system administrator troubleshoots network latency issues affecting server performance.',
'By using ServiceNow, companies reduce manual work through automation.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 768] [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[ 0.7530, -0.0187, 0.1202]])
Training Details
Training Dataset
json
- Dataset: json
- Size: 1,979 training samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 5 tokens
- mean: 14.95 tokens
- max: 25 tokens
- min: 6 tokens
- mean: 14.98 tokens
- max: 25 tokens
- min: 5 tokens
- mean: 16.91 tokens
- max: 31 tokens
- Samples:
anchor positive negative He uses part of his workday to conduct quality assurance tests on products.She checks product functionality and identifies defects as part of her role.The violinist practices scales and pieces late into the evening.Gmail search function does not return relevant results.He struggles to find emails using Gmail's search bar.She watches YouTube videos on email organization tips.Software installation hangs midwaySetup process freezes during installationDesktop icons are rearranged randomly - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 64learning_rate: 2e-05num_train_epochs: 1warmup_ratio: 0.1prompts: task: sentence similarity | query:
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthproject: huggingfacetrackio_space_id: trackioddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: noneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Trueprompts: task: sentence similarity | query:batch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Framework Versions
- Python: 3.12.12
- Sentence Transformers: 5.1.2
- Transformers: 4.57.1
- PyTorch: 2.8.0+cu126
- Accelerate: 1.11.0
- Datasets: 4.0.0
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}