---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:1979
- loss:MultipleNegativesRankingLoss
base_model: google/embeddinggemma-300m
widget:
- source_sentence: The iPhone Bluetooth connection drops unexpectedly during use.
sentences:
- The customer is asking how to update apps on their iPhone automatically.
- The device loses power quickly despite showing a 100% battery level earlier.
- Bluetooth devices disconnect frequently when paired with the iPhone.
- source_sentence: The crash in the cloud service happened when the authentication
module failed to process tokens correctly.
sentences:
- During the parade, the crash of a float startled the spectators but caused no
injuries.
- Cross-platform contact synchronization failed in the application.
- Engineers fixed the crash by patching the token validation algorithm causing the
server to terminate.
- source_sentence: Atlassian Confluence is often used for internal company wikis.
sentences:
- Many organizations rely on Confluence to maintain up-to-date internal knowledge
bases.
- Threading in Slack helps prevent important messages from getting lost.
- Confluence users sometimes face performance issues when integrating with third-party
plugins, causing delays in page loading and editing.
- source_sentence: Windows supports file system formats like NTFS and FAT32 for data
storage management.
sentences:
- Network-stored PDFs cause Adobe Acrobat to shut down unexpectedly.
- Windows users often face network connectivity issues that prevent access to shared
drives, unrelated to file system formats like NTFS or FAT32.
- Converting drives between NTFS and FAT32 is common in Windows for compatibility
reasons.
- source_sentence: Tableau can be extended with Python or R for advanced analytics.
sentences:
- Data scientists integrate Tableau with external scripts to enhance visualizations.
- By using ServiceNow, companies reduce manual work through automation.
- The system administrator troubleshoots network latency issues affecting server
performance.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on google/embeddinggemma-300m
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google/embeddinggemma-300m](https://huggingface.co/google/embeddinggemma-300m) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [google/embeddinggemma-300m](https://huggingface.co/google/embeddinggemma-300m)
- **Maximum Sequence Length:** 2048 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False, 'architecture': 'Gemma3TextModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 3072, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(3): Dense({'in_features': 3072, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(4): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("KameronB/IT-embeddinggemma")
# Run inference
queries = [
"Tableau can be extended with Python or R for advanced analytics.",
]
documents = [
'Data scientists integrate Tableau with external scripts to enhance visualizations.',
'The system administrator troubleshoots network latency issues affecting server performance.',
'By using ServiceNow, companies reduce manual work through automation.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 768] [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[ 0.7530, -0.0187, 0.1202]])
```
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 1,979 training samples
* Columns: anchor, positive, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details |
He uses part of his workday to conduct quality assurance tests on products. | She checks product functionality and identifies defects as part of her role. | The violinist practices scales and pieces late into the evening. |
| Gmail search function does not return relevant results. | He struggles to find emails using Gmail's search bar. | She watches YouTube videos on email organization tips. |
| Software installation hangs midway | Setup process freezes during installation | Desktop icons are rearranged randomly |
* Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 64
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `prompts`: task: sentence similarity | query:
#### All Hyperparameters