--- license: mit --- ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch.nn.functional as F # Load the model and tokenizer from Hugging Face model_name = "KameronB/SITTCIC-roBERTa-f32" print("Loading tokenizer...") tokenizer = AutoTokenizer.from_pretrained(model_name) print("Loading model...") model = AutoModelForSequenceClassification.from_pretrained(model_name) # Set model to evaluation mode model.eval() print(f"Model loaded successfully!") print(f"Model architecture: {model.config.architectures}") print(f"Number of labels: {model.config.num_labels}") # Check if CUDA is available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) print(f"Using device: {device}") # Function to make predictions def predict_text(text, model, tokenizer, device): """ Make a prediction on input text using the loaded model """ # Tokenize the input text inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512) # Move inputs to the same device as the model inputs = {k: v.to(device) for k, v in inputs.items()} # Make prediction with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits # Apply softmax to get probabilities probabilities = F.softmax(logits, dim=-1) # Get predicted class predicted_class = torch.argmax(logits, dim=-1).item() confidence = probabilities[0][predicted_class].item() return predicted_class, confidence, probabilities.cpu().numpy() # Example inference sample_texts = [ "Issue resolved", "Cleared the laptop's cache and cookies then restarted it.", ] print("Making predictions on sample texts:") print("-" * 50) for i, text in enumerate(sample_texts, 1): predicted_class, confidence, probabilities = predict_text(text, model, tokenizer, device) print(f"Text {i}: {text}") print(f"Predicted Class: {predicted_class}") print(f"Confidence: {confidence:.4f}") print(f"All probabilities: {probabilities[0]}") print("-" * 50) ```