Update README.md
Browse files
README.md
CHANGED
|
@@ -11,4 +11,50 @@ base_model:
|
|
| 11 |
pipeline_tag: summarization
|
| 12 |
tags:
|
| 13 |
- generated_from_text
|
| 14 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
pipeline_tag: summarization
|
| 12 |
tags:
|
| 13 |
- generated_from_text
|
| 14 |
+
---
|
| 15 |
+
## Summarizer
|
| 16 |
+
This model is a fine-tuned version of google-t5/t5-base on a knkarthick/samsum dataset. It achieves the following results on the evaluation set:
|
| 17 |
+
• ROUGE-1: 51.41
|
| 18 |
+
|
| 19 |
+
• ROUGE-2: 26.72
|
| 20 |
+
|
| 21 |
+
• ROUGE-L: 42.15
|
| 22 |
+
|
| 23 |
+
• ROUGE-Lsum: 42.17
|
| 24 |
+
|
| 25 |
+
## Training hyperparameters
|
| 26 |
+
|
| 27 |
+
The following hyperparameters were used during training:
|
| 28 |
+
|
| 29 |
+
• learning_rate: 5e-5
|
| 30 |
+
|
| 31 |
+
• train_batch_size: 2
|
| 32 |
+
|
| 33 |
+
• gradient_accumulation_steps=2
|
| 34 |
+
|
| 35 |
+
• seed: 42
|
| 36 |
+
|
| 37 |
+
• weight_decay=0.01
|
| 38 |
+
|
| 39 |
+
• lr_scheduler_type: linear
|
| 40 |
+
|
| 41 |
+
• warmup_ratio=0.1
|
| 42 |
+
|
| 43 |
+
• num_epochs: 3
|
| 44 |
+
|
| 45 |
+
## Training results
|
| 46 |
+
| Training Loss | Epoch | Step |
|
| 47 |
+
| ------------- | ----- | ----- |
|
| 48 |
+
| 1.491800 | 1 | 3650 |
|
| 49 |
+
| 1.404900 | 2 | 7350 |
|
| 50 |
+
| 1.322800 | 3 | 11000 |
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
## Framework versions
|
| 54 |
+
• transformers: 4.56.0
|
| 55 |
+
|
| 56 |
+
• pytorch: 2.0.1+cu118
|
| 57 |
+
|
| 58 |
+
• datasets: 2.14.4
|
| 59 |
+
|
| 60 |
+
• tokenizers: 0.13.3
|