Upload Vietnamese sentiment analysis model
Browse files- README.md +73 -0
- added_tokens.json +3 -0
- bpe.codes +0 -0
- config.json +40 -0
- model.safetensors +3 -0
- special_tokens_map.json +9 -0
- tokenizer_config.json +55 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: vi
|
3 |
+
license: mit
|
4 |
+
tags:
|
5 |
+
- vietnamese
|
6 |
+
- sentiment-analysis
|
7 |
+
- phobert
|
8 |
+
- text-classification
|
9 |
+
datasets:
|
10 |
+
- custom
|
11 |
+
metrics:
|
12 |
+
- f1
|
13 |
+
---
|
14 |
+
|
15 |
+
# Vietnamese Sentiment Analysis Model
|
16 |
+
|
17 |
+
This model is fine-tuned from [vinai/phobert-base](https://huggingface.co/vinai/phobert-base) for Vietnamese sentiment analysis with entity context.
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
The model classifies text sentiment into three categories:
|
22 |
+
- NEGATIVE (0)
|
23 |
+
- NEUTRAL (1)
|
24 |
+
- POSITIVE (2)
|
25 |
+
|
26 |
+
It is specifically designed to analyze sentiment toward a specific entity mentioned in the text.
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
The model is intended to be used for Vietnamese sentiment analysis, specifically when analyzing sentiment toward a named entity.
|
31 |
+
|
32 |
+
### How to use
|
33 |
+
|
34 |
+
```python
|
35 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
36 |
+
import torch
|
37 |
+
|
38 |
+
# Load model and tokenizer
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained("Khoa/vietnamese-sentiment-analysis-with-entity")
|
40 |
+
model = AutoModelForSequenceClassification.from_pretrained("Khoa/vietnamese-sentiment-analysis-with-entity")
|
41 |
+
|
42 |
+
# Function to predict sentiment
|
43 |
+
def predict_sentiment(text, entity, model, tokenizer):
|
44 |
+
combined_text = f"Đối với {entity}, {text}"
|
45 |
+
inputs = tokenizer(combined_text, return_tensors="pt", truncation=True, padding=True)
|
46 |
+
|
47 |
+
with torch.no_grad():
|
48 |
+
outputs = model(**inputs)
|
49 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
50 |
+
predicted_class = torch.argmax(predictions, dim=-1).item()
|
51 |
+
|
52 |
+
sentiment_labels = {0: "NEGATIVE", 1: "NEUTRAL", 2: "POSITIVE"}
|
53 |
+
return sentiment_labels[predicted_class], predictions[0].tolist()
|
54 |
+
|
55 |
+
# Example usage
|
56 |
+
text = "Món ăn rất ngon nhưng giá hơi đắt"
|
57 |
+
entity = "Nhà hàng ABC"
|
58 |
+
sentiment, confidence = predict_sentiment(text, entity, model, tokenizer)
|
59 |
+
print(f"Sentiment: {sentiment}")
|
60 |
+
```
|
61 |
+
|
62 |
+
## Training procedure
|
63 |
+
|
64 |
+
The model was fine-tuned on a custom Vietnamese dataset with entity-specific sentiment annotations.
|
65 |
+
|
66 |
+
|
67 |
+
This model was fine-tuned on a custom Vietnamese sentiment analysis dataset.
|
68 |
+
It achieves the following metrics on the test set:
|
69 |
+
- Accuracy: 0.0000
|
70 |
+
- F1 Score: 0.0000
|
71 |
+
- Precision: 0.0000
|
72 |
+
- Recall: 0.0000
|
73 |
+
|
added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<mask>": 64000
|
3 |
+
}
|
bpe.codes
ADDED
The diff for this file is too large to render.
See raw diff
|
|
config.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "vinai/phobert-base",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"id2label": {
|
15 |
+
"0": "LABEL_0",
|
16 |
+
"1": "LABEL_1",
|
17 |
+
"2": "LABEL_2"
|
18 |
+
},
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"intermediate_size": 3072,
|
21 |
+
"label2id": {
|
22 |
+
"LABEL_0": 0,
|
23 |
+
"LABEL_1": 1,
|
24 |
+
"LABEL_2": 2
|
25 |
+
},
|
26 |
+
"layer_norm_eps": 1e-05,
|
27 |
+
"max_position_embeddings": 258,
|
28 |
+
"model_type": "roberta",
|
29 |
+
"num_attention_heads": 12,
|
30 |
+
"num_hidden_layers": 12,
|
31 |
+
"pad_token_id": 1,
|
32 |
+
"position_embedding_type": "absolute",
|
33 |
+
"problem_type": "single_label_classification",
|
34 |
+
"tokenizer_class": "PhobertTokenizer",
|
35 |
+
"torch_dtype": "float32",
|
36 |
+
"transformers_version": "4.48.3",
|
37 |
+
"type_vocab_size": 1,
|
38 |
+
"use_cache": true,
|
39 |
+
"vocab_size": 64001
|
40 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:abbe45d0304b45cfc244c963ad7cc5850f2003dcbf7f31f4287284964c29fa45
|
3 |
+
size 540026460
|
special_tokens_map.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": "<mask>",
|
6 |
+
"pad_token": "<pad>",
|
7 |
+
"sep_token": "</s>",
|
8 |
+
"unk_token": "<unk>"
|
9 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"64000": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "<mask>",
|
50 |
+
"model_max_length": 1000000000000000019884624838656,
|
51 |
+
"pad_token": "<pad>",
|
52 |
+
"sep_token": "</s>",
|
53 |
+
"tokenizer_class": "PhobertTokenizer",
|
54 |
+
"unk_token": "<unk>"
|
55 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|