--- language: vi license: mit tags: - vietnamese - sentiment-analysis - phobert - text-classification datasets: - custom metrics: - f1 --- # Vietnamese Sentiment Analysis Model This model is fine-tuned from [vinai/phobert-base](https://huggingface.co/vinai/phobert-base) for Vietnamese sentiment analysis with entity context. ## Model description The model classifies text sentiment into three categories: - NEGATIVE (0) - NEUTRAL (1) - POSITIVE (2) It is specifically designed to analyze sentiment toward a specific entity mentioned in the text. ## Intended uses & limitations The model is intended to be used for Vietnamese sentiment analysis, specifically when analyzing sentiment toward a named entity. ### How to use ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained("Khoa/vietnamese-sentiment-analysis-with-entity") model = AutoModelForSequenceClassification.from_pretrained("Khoa/vietnamese-sentiment-analysis-with-entity") # Function to predict sentiment def predict_sentiment(text, entity, model, tokenizer): combined_text = f"Đối với {entity}, {text}" inputs = tokenizer(combined_text, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): outputs = model(**inputs) predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) predicted_class = torch.argmax(predictions, dim=-1).item() sentiment_labels = {0: "NEGATIVE", 1: "NEUTRAL", 2: "POSITIVE"} return sentiment_labels[predicted_class], predictions[0].tolist() # Example usage text = "Món ăn rất ngon nhưng giá hơi đắt" entity = "Nhà hàng ABC" sentiment, confidence = predict_sentiment(text, entity, model, tokenizer) print(f"Sentiment: {sentiment}") ``` ## Training procedure The model was fine-tuned on a custom Vietnamese dataset with entity-specific sentiment annotations. This model was fine-tuned on a custom Vietnamese sentiment analysis dataset. It achieves the following metrics on the test set: - Accuracy: 0.0000 - F1 Score: 0.0000 - Precision: 0.0000 - Recall: 0.0000