--- license: apache-2.0 library_name: peft tags: - generated_from_trainer metrics: - accuracy base_model: distilbert-base-uncased model-index: - name: distilbert-base-uncased-lora-text-classification results: [] --- # distilbert-base-uncased-lora-text-classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3518 - Accuracy: {'accuracy': 0.892} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-------------------:| | No log | 1.0 | 250 | 0.5531 | {'accuracy': 0.844} | | 0.4257 | 2.0 | 500 | 0.3913 | {'accuracy': 0.888} | | 0.4257 | 3.0 | 750 | 0.6203 | {'accuracy': 0.865} | | 0.2247 | 4.0 | 1000 | 0.6630 | {'accuracy': 0.884} | | 0.2247 | 5.0 | 1250 | 0.8218 | {'accuracy': 0.885} | | 0.0802 | 6.0 | 1500 | 0.9760 | {'accuracy': 0.866} | | 0.0802 | 7.0 | 1750 | 0.9308 | {'accuracy': 0.882} | | 0.0458 | 8.0 | 2000 | 1.0010 | {'accuracy': 0.884} | | 0.0458 | 9.0 | 2250 | 1.2157 | {'accuracy': 0.884} | | 0.0263 | 10.0 | 2500 | 1.2556 | {'accuracy': 0.89} | | 0.0263 | 11.0 | 2750 | 1.0911 | {'accuracy': 0.892} | | 0.0244 | 12.0 | 3000 | 1.2507 | {'accuracy': 0.884} | | 0.0244 | 13.0 | 3250 | 1.3437 | {'accuracy': 0.889} | | 0.0239 | 14.0 | 3500 | 1.1973 | {'accuracy': 0.893} | | 0.0239 | 15.0 | 3750 | 1.1784 | {'accuracy': 0.894} | | 0.0006 | 16.0 | 4000 | 1.2430 | {'accuracy': 0.892} | | 0.0006 | 17.0 | 4250 | 1.3177 | {'accuracy': 0.888} | | 0.0018 | 18.0 | 4500 | 1.3294 | {'accuracy': 0.893} | | 0.0018 | 19.0 | 4750 | 1.3637 | {'accuracy': 0.891} | | 0.0025 | 20.0 | 5000 | 1.3518 | {'accuracy': 0.892} | ### Framework versions - PEFT 0.10.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2