File size: 5,265 Bytes
87c424a
 
 
 
e0a9664
87c424a
 
 
e0a9664
 
87c424a
 
 
 
 
 
 
 
 
 
 
 
e0a9664
87c424a
e0a9664
 
 
 
 
 
 
 
 
87c424a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
library_name: peft
model-index:
- name: zephyr-7b-mypo3_sim-qlora-lr5e6-beta0.30
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/1014579852qq-tsinghua-university/huggingface/runs/wnnhas0b)
# zephyr-7b-mypo3_sim-qlora-lr5e6-beta0.30

This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-qlora](https://huggingface.co/alignment-handbook/zephyr-7b-sft-qlora) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3540
- Rewards/chosen: -0.0639
- Rewards/rejected: -0.3680
- Rewards/accuracies: 0.7050
- Rewards/margins: 0.3041
- Logps/rejected: -2.2845
- Logps/chosen: -1.1386
- Logits/rejected: -1.9700
- Logits/chosen: -2.0510

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 5
- gradient_accumulation_steps: 4
- total_train_batch_size: 40
- total_eval_batch_size: 20
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 1.3799        | 0.0654 | 100  | 1.3804          | -0.0062        | -0.0408          | 0.6600             | 0.0346          | -1.1940        | -0.9462      | -2.1974         | -2.2810       |
| 1.3728        | 0.1308 | 200  | 1.3734          | -0.0308        | -0.1119          | 0.6900             | 0.0811          | -1.4310        | -1.0283      | -2.2618         | -2.3330       |
| 1.3605        | 0.1963 | 300  | 1.3670          | -0.0656        | -0.2070          | 0.7200             | 0.1414          | -1.7478        | -1.1442      | -2.1971         | -2.2674       |
| 1.3607        | 0.2617 | 400  | 1.3637          | -0.0644        | -0.2551          | 0.6975             | 0.1908          | -1.9084        | -1.1401      | -2.2602         | -2.3277       |
| 1.3642        | 0.3271 | 500  | 1.3625          | -0.0744        | -0.3109          | 0.6875             | 0.2366          | -2.0943        | -1.1734      | -2.1841         | -2.2534       |
| 1.3489        | 0.3925 | 600  | 1.3649          | -0.1095        | -0.4197          | 0.6850             | 0.3101          | -2.4568        | -1.2906      | -2.0263         | -2.1039       |
| 1.3735        | 0.4580 | 700  | 1.3653          | -0.1046        | -0.4143          | 0.7000             | 0.3097          | -2.4389        | -1.2743      | -1.9237         | -2.0155       |
| 1.3606        | 0.5234 | 800  | 1.3592          | -0.0745        | -0.3701          | 0.6950             | 0.2956          | -2.2915        | -1.1739      | -1.9493         | -2.0356       |
| 1.3462        | 0.5888 | 900  | 1.3568          | -0.0854        | -0.3668          | 0.7050             | 0.2815          | -2.2807        | -1.2100      | -1.9785         | -2.0609       |
| 1.3527        | 0.6542 | 1000 | 1.3548          | -0.0626        | -0.3514          | 0.7050             | 0.2888          | -2.2291        | -1.1342      | -1.9978         | -2.0771       |
| 1.3483        | 0.7197 | 1100 | 1.3558          | -0.0665        | -0.3741          | 0.7025             | 0.3076          | -2.3048        | -1.1471      | -1.9802         | -2.0598       |
| 1.3558        | 0.7851 | 1200 | 1.3542          | -0.0628        | -0.3646          | 0.7050             | 0.3018          | -2.2733        | -1.1348      | -1.9719         | -2.0522       |
| 1.3515        | 0.8505 | 1300 | 1.3543          | -0.0644        | -0.3702          | 0.7050             | 0.3058          | -2.2918        | -1.1402      | -1.9694         | -2.0505       |
| 1.3572        | 0.9159 | 1400 | 1.3540          | -0.0639        | -0.3674          | 0.7075             | 0.3035          | -2.2825        | -1.1385      | -1.9716         | -2.0522       |
| 1.3527        | 0.9814 | 1500 | 1.3541          | -0.0637        | -0.3677          | 0.7025             | 0.3039          | -2.2834        | -1.1380      | -1.9704         | -2.0513       |


### Framework versions

- PEFT 0.10.0
- Transformers 4.43.1
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1