--- license: apache-2.0 base_model: mistralai/Mistral-7B-v0.1 tags: - alignment-handbook - trl - dpo - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized library_name: peft model-index: - name: zephyr-7b-nca_pair-qlora-lr5e6-beta0.1 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/1014579852qq-tsinghua-university/huggingface/runs/p6zmvlxg) # zephyr-7b-nca_pair-qlora-lr5e6-beta0.1 This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-qlora](https://huggingface.co/alignment-handbook/zephyr-7b-sft-qlora) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 1.3408 - Rewards/chosen: 0.1419 - Rewards/rejected: -0.3279 - Rewards/accuracies: 0.7450 - Rewards/margins: 0.4698 - Logps/rejected: -257.3817 - Logps/chosen: -270.7577 - Logits/rejected: -2.2321 - Logits/chosen: -2.3119 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 5 - gradient_accumulation_steps: 4 - total_train_batch_size: 40 - total_eval_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 1.3652 | 0.0654 | 100 | 1.3585 | 0.0179 | -0.2204 | 0.7200 | 0.2383 | -256.3067 | -271.9973 | -2.2040 | -2.2872 | | 1.3457 | 0.1308 | 200 | 1.3529 | 0.1799 | -0.2015 | 0.7425 | 0.3814 | -256.1176 | -270.3774 | -2.2080 | -2.2912 | | 1.3328 | 0.1963 | 300 | 1.3500 | 0.1269 | -0.2919 | 0.7150 | 0.4188 | -257.0218 | -270.9071 | -2.2303 | -2.3106 | | 1.3452 | 0.2617 | 400 | 1.3536 | 0.1854 | -0.2395 | 0.7200 | 0.4249 | -256.4976 | -270.3225 | -2.2250 | -2.3062 | | 1.3446 | 0.3271 | 500 | 1.3501 | 0.0859 | -0.3936 | 0.7275 | 0.4795 | -258.0389 | -271.3175 | -2.1984 | -2.2818 | | 1.333 | 0.3925 | 600 | 1.3496 | 0.0493 | -0.3851 | 0.7450 | 0.4344 | -257.9544 | -271.6837 | -2.2107 | -2.2937 | | 1.3577 | 0.4580 | 700 | 1.3457 | 0.1306 | -0.2688 | 0.7175 | 0.3994 | -256.7908 | -270.8706 | -2.2100 | -2.2934 | | 1.343 | 0.5234 | 800 | 1.3449 | 0.0814 | -0.3810 | 0.7150 | 0.4623 | -257.9127 | -271.3629 | -2.2312 | -2.3121 | | 1.3439 | 0.5888 | 900 | 1.3459 | 0.0385 | -0.4054 | 0.7250 | 0.4439 | -258.1573 | -271.7917 | -2.2327 | -2.3137 | | 1.3388 | 0.6542 | 1000 | 1.3442 | 0.2150 | -0.2625 | 0.7325 | 0.4775 | -256.7277 | -270.0262 | -2.2387 | -2.3183 | | 1.3186 | 0.7197 | 1100 | 1.3423 | 0.1242 | -0.3587 | 0.7325 | 0.4829 | -257.6895 | -270.9345 | -2.2306 | -2.3107 | | 1.3299 | 0.7851 | 1200 | 1.3417 | 0.1468 | -0.3270 | 0.7425 | 0.4737 | -257.3728 | -270.7089 | -2.2275 | -2.3078 | | 1.3248 | 0.8505 | 1300 | 1.3413 | 0.1555 | -0.3132 | 0.7525 | 0.4687 | -257.2347 | -270.6216 | -2.2306 | -2.3105 | | 1.3398 | 0.9159 | 1400 | 1.3414 | 0.1409 | -0.3251 | 0.7475 | 0.4660 | -257.3535 | -270.7675 | -2.2317 | -2.3117 | | 1.325 | 0.9814 | 1500 | 1.3409 | 0.1433 | -0.3268 | 0.7475 | 0.4701 | -257.3707 | -270.7436 | -2.2339 | -2.3137 | ### Framework versions - PEFT 0.10.0 - Transformers 4.43.1 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1