--- license: apache-2.0 base_model: mistralai/Mistral-7B-v0.1 tags: - alignment-handbook - trl - orpo - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized library_name: peft model-index: - name: zephyr-7b-orpo-qlora-lr5e6-beta0.1 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/1014579852qq-tsinghua-university/huggingface/runs/97o9oz6g) # zephyr-7b-orpo-qlora-lr5e6-beta0.1 This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-qlora](https://huggingface.co/alignment-handbook/zephyr-7b-sft-qlora) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 1.0573 - Rewards/chosen: -0.0746 - Rewards/rejected: -0.0911 - Rewards/accuracies: 0.6141 - Rewards/margins: 0.0165 - Logps/rejected: -0.9107 - Logps/chosen: -0.7459 - Logits/rejected: -2.2172 - Logits/chosen: -2.3156 - Nll Loss: 1.0059 - Log Odds Ratio: -0.6437 - Log Odds Chosen: 0.2821 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 5 - gradient_accumulation_steps: 4 - total_train_batch_size: 40 - total_eval_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | Log Odds Ratio | Log Odds Chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:--------------:|:---------------:| | 1.2019 | 0.0723 | 100 | 1.1583 | -0.0797 | -0.0926 | 0.5842 | 0.0129 | -0.9264 | -0.7970 | -2.2900 | -2.3902 | 1.0948 | -0.6684 | 0.2079 | | 1.1793 | 0.1446 | 200 | 1.1165 | -0.0775 | -0.0918 | 0.6060 | 0.0143 | -0.9181 | -0.7754 | -2.2619 | -2.3628 | 1.0550 | -0.6553 | 0.2332 | | 1.1317 | 0.2170 | 300 | 1.0960 | -0.0758 | -0.0910 | 0.6060 | 0.0153 | -0.9104 | -0.7575 | -2.2513 | -2.3506 | 1.0367 | -0.6496 | 0.2630 | | 1.1023 | 0.2893 | 400 | 1.0837 | -0.0758 | -0.0914 | 0.6087 | 0.0156 | -0.9140 | -0.7583 | -2.2417 | -2.3391 | 1.0275 | -0.6482 | 0.2625 | | 1.1022 | 0.3616 | 500 | 1.0748 | -0.0751 | -0.0911 | 0.6168 | 0.0160 | -0.9110 | -0.7507 | -2.2335 | -2.3303 | 1.0204 | -0.6471 | 0.2753 | | 1.1102 | 0.4339 | 600 | 1.0691 | -0.0746 | -0.0908 | 0.6114 | 0.0162 | -0.9078 | -0.7461 | -2.2155 | -2.3130 | 1.0153 | -0.6447 | 0.2813 | | 1.0911 | 0.5062 | 700 | 1.0641 | -0.0746 | -0.0909 | 0.6114 | 0.0163 | -0.9089 | -0.7463 | -2.2246 | -2.3233 | 1.0116 | -0.6446 | 0.2801 | | 1.0863 | 0.5786 | 800 | 1.0610 | -0.0745 | -0.0912 | 0.6168 | 0.0167 | -0.9119 | -0.7445 | -2.2159 | -2.3155 | 1.0091 | -0.6425 | 0.2909 | | 1.099 | 0.6509 | 900 | 1.0589 | -0.0749 | -0.0914 | 0.6168 | 0.0165 | -0.9135 | -0.7485 | -2.2140 | -2.3129 | 1.0076 | -0.6436 | 0.2801 | | 1.067 | 0.7232 | 1000 | 1.0580 | -0.0745 | -0.0907 | 0.6168 | 0.0162 | -0.9071 | -0.7447 | -2.2185 | -2.3171 | 1.0064 | -0.6446 | 0.2788 | | 1.1264 | 0.7955 | 1100 | 1.0574 | -0.0748 | -0.0913 | 0.6141 | 0.0165 | -0.9129 | -0.7477 | -2.2184 | -2.3166 | 1.0061 | -0.6437 | 0.2809 | | 1.0909 | 0.8678 | 1200 | 1.0573 | -0.0746 | -0.0911 | 0.6168 | 0.0165 | -0.9108 | -0.7458 | -2.2147 | -2.3135 | 1.0059 | -0.6437 | 0.2825 | | 1.1175 | 0.9402 | 1300 | 1.0573 | -0.0746 | -0.0911 | 0.6168 | 0.0165 | -0.9108 | -0.7456 | -2.2160 | -2.3146 | 1.0059 | -0.6434 | 0.2827 | ### Framework versions - PEFT 0.10.0 - Transformers 4.43.1 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1