KingCobra69 commited on
Commit
ff4b189
Β·
verified Β·
1 Parent(s): 305c476

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -65
README.md CHANGED
@@ -1,66 +1,69 @@
1
- ---
2
- license: apache-2.0
3
- datasets:
4
- - cerebras/SlimPajama-627B
5
- - bigcode/starcoderdata
6
- - HuggingFaceH4/ultrachat_200k
7
- - HuggingFaceH4/ultrafeedback_binarized
8
- language:
9
- - en
10
- widget:
11
- - example_title: Fibonacci (Python)
12
- messages:
13
- - role: system
14
- content: You are a chatbot who can help code!
15
- - role: user
16
- content: Write me a function to calculate the first 10 digits of the fibonacci sequence in Python and print it out to the CLI.
17
- ---
18
- <div align="center">
19
-
20
- # TinyLlama-1.1B
21
- </div>
22
-
23
- https://github.com/jzhang38/TinyLlama
24
-
25
- The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs πŸš€πŸš€. The training has started on 2023-09-01.
26
-
27
-
28
- We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
29
-
30
- #### This Model
31
- This is the chat model finetuned on top of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T). **We follow [HF's Zephyr](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha)'s training recipe.** The model was " initially fine-tuned on a variant of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT.
32
- We then further aligned the model with [πŸ€— TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contain 64k prompts and model completions that are ranked by GPT-4."
33
-
34
-
35
- #### How to use
36
- You will need the transformers>=4.34
37
- Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information.
38
-
39
- ```python
40
- # Install transformers from source - only needed for versions <= v4.34
41
- # pip install git+https://github.com/huggingface/transformers.git
42
- # pip install accelerate
43
-
44
- import torch
45
- from transformers import pipeline
46
-
47
- pipe = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", torch_dtype=torch.bfloat16, device_map="auto")
48
-
49
- # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
50
- messages = [
51
- {
52
- "role": "system",
53
- "content": "You are a friendly chatbot who always responds in the style of a pirate",
54
- },
55
- {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
56
- ]
57
- prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
58
- outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
59
- print(outputs[0]["generated_text"])
60
- # <|system|>
61
- # You are a friendly chatbot who always responds in the style of a pirate.</s>
62
- # <|user|>
63
- # How many helicopters can a human eat in one sitting?</s>
64
- # <|assistant|>
65
- # ...
 
 
 
66
  ```
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - cerebras/SlimPajama-627B
5
+ - bigcode/starcoderdata
6
+ - HuggingFaceH4/ultrachat_200k
7
+ - HuggingFaceH4/ultrafeedback_binarized
8
+ language:
9
+ - en
10
+ widget:
11
+ - example_title: Fibonacci (Python)
12
+ messages:
13
+ - role: system
14
+ content: You are a chatbot who can help code!
15
+ - role: user
16
+ content: >-
17
+ Write me a function to calculate the first 10 digits of the fibonacci
18
+ sequence in Python and print it out to the CLI.
19
+ pipeline_tag: object-detection
20
+ ---
21
+ <div align="center">
22
+
23
+ # TinyLlama-1.1B
24
+ </div>
25
+
26
+ https://github.com/jzhang38/TinyLlama
27
+
28
+ The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs πŸš€πŸš€. The training has started on 2023-09-01.
29
+
30
+
31
+ We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
32
+
33
+ #### This Model
34
+ This is the chat model finetuned on top of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T). **We follow [HF's Zephyr](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha)'s training recipe.** The model was " initially fine-tuned on a variant of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT.
35
+ We then further aligned the model with [πŸ€— TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contain 64k prompts and model completions that are ranked by GPT-4."
36
+
37
+
38
+ #### How to use
39
+ You will need the transformers>=4.34
40
+ Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information.
41
+
42
+ ```python
43
+ # Install transformers from source - only needed for versions <= v4.34
44
+ # pip install git+https://github.com/huggingface/transformers.git
45
+ # pip install accelerate
46
+
47
+ import torch
48
+ from transformers import pipeline
49
+
50
+ pipe = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", torch_dtype=torch.bfloat16, device_map="auto")
51
+
52
+ # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
53
+ messages = [
54
+ {
55
+ "role": "system",
56
+ "content": "You are a friendly chatbot who always responds in the style of a pirate",
57
+ },
58
+ {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
59
+ ]
60
+ prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
61
+ outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
62
+ print(outputs[0]["generated_text"])
63
+ # <|system|>
64
+ # You are a friendly chatbot who always responds in the style of a pirate.</s>
65
+ # <|user|>
66
+ # How many helicopters can a human eat in one sitting?</s>
67
+ # <|assistant|>
68
+ # ...
69
  ```