KingRam commited on
Commit
d4fff22
·
verified ·
1 Parent(s): 9c27990

End of training

Browse files
README.md ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: PekingU/rtdetr_v2_r50vd
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: rtdetr-v2-r50-kitti-finetune-2
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # rtdetr-v2-r50-kitti-finetune-2
16
+
17
+ This model is a fine-tuned version of [PekingU/rtdetr_v2_r50vd](https://huggingface.co/PekingU/rtdetr_v2_r50vd) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 8.5547
20
+ - Map: 0.485
21
+ - Map 50: 0.7268
22
+ - Map 75: 0.5322
23
+ - Map Small: 0.3428
24
+ - Map Medium: 0.4976
25
+ - Map Large: 0.6003
26
+ - Mar 1: 0.3725
27
+ - Mar 10: 0.5938
28
+ - Mar 100: 0.6304
29
+ - Mar Small: 0.4564
30
+ - Mar Medium: 0.6461
31
+ - Mar Large: 0.7557
32
+ - Map Car: 0.6901
33
+ - Mar 100 Car: 0.7866
34
+ - Map Pedestrian: 0.4012
35
+ - Mar 100 Pedestrian: 0.5245
36
+ - Map Cyclist: 0.426
37
+ - Mar 100 Cyclist: 0.5849
38
+ - Map Van: 0.6925
39
+ - Mar 100 Van: 0.7705
40
+ - Map Truck: 0.6798
41
+ - Mar 100 Truck: 0.811
42
+ - Map Misc: 0.4375
43
+ - Mar 100 Misc: 0.6007
44
+ - Map Tram: 0.6611
45
+ - Mar 100 Tram: 0.7587
46
+ - Map Person Sitting: 0.3329
47
+ - Mar 100 Person Sitting: 0.5486
48
+ - Map Dontcare: 0.044
49
+ - Mar 100 Dontcare: 0.2877
50
+
51
+ ## Model description
52
+
53
+ More information needed
54
+
55
+ ## Intended uses & limitations
56
+
57
+ More information needed
58
+
59
+ ## Training and evaluation data
60
+
61
+ More information needed
62
+
63
+ ## Training procedure
64
+
65
+ ### Training hyperparameters
66
+
67
+ The following hyperparameters were used during training:
68
+ - learning_rate: 3e-05
69
+ - train_batch_size: 32
70
+ - eval_batch_size: 8
71
+ - seed: 42
72
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
73
+ - lr_scheduler_type: cosine_with_restarts
74
+ - lr_scheduler_warmup_steps: 1000
75
+ - num_epochs: 40
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Car | Mar 100 Car | Map Pedestrian | Mar 100 Pedestrian | Map Cyclist | Mar 100 Cyclist | Map Van | Mar 100 Van | Map Truck | Mar 100 Truck | Map Misc | Mar 100 Misc | Map Tram | Mar 100 Tram | Map Person Sitting | Mar 100 Person Sitting | Map Dontcare | Mar 100 Dontcare |
80
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:-------:|:-----------:|:--------------:|:------------------:|:-----------:|:---------------:|:-------:|:-----------:|:---------:|:-------------:|:--------:|:------------:|:--------:|:------------:|:------------------:|:----------------------:|:------------:|:----------------:|
81
+ | No log | 1.0 | 164 | 26.6753 | 0.0437 | 0.0725 | 0.0462 | 0.0207 | 0.0431 | 0.0811 | 0.0636 | 0.1473 | 0.1846 | 0.1324 | 0.1902 | 0.2671 | 0.3193 | 0.5141 | 0.0321 | 0.2986 | 0.0 | 0.0 | 0.0379 | 0.4384 | 0.0 | 0.061 | 0.0001 | 0.0176 | 0.0034 | 0.2534 | 0.0 | 0.0 | 0.0007 | 0.0779 |
82
+ | No log | 2.0 | 328 | 15.4174 | 0.1446 | 0.2304 | 0.1561 | 0.1265 | 0.1433 | 0.1852 | 0.1752 | 0.3192 | 0.3606 | 0.2893 | 0.3773 | 0.4656 | 0.5433 | 0.6832 | 0.2426 | 0.3687 | 0.0288 | 0.3011 | 0.2055 | 0.6112 | 0.2315 | 0.5961 | 0.0026 | 0.1622 | 0.0404 | 0.3784 | 0.0 | 0.0143 | 0.0064 | 0.1302 |
83
+ | No log | 3.0 | 492 | 12.2696 | 0.2023 | 0.3323 | 0.2077 | 0.1618 | 0.2117 | 0.2549 | 0.2258 | 0.4109 | 0.4626 | 0.3835 | 0.4601 | 0.5739 | 0.5918 | 0.7299 | 0.2987 | 0.4422 | 0.1587 | 0.4697 | 0.2849 | 0.6799 | 0.3097 | 0.7279 | 0.0071 | 0.2818 | 0.1533 | 0.567 | 0.0 | 0.0429 | 0.0161 | 0.2216 |
84
+ | 37.4405 | 4.0 | 656 | 11.0586 | 0.2433 | 0.4049 | 0.2493 | 0.2134 | 0.2492 | 0.3038 | 0.2443 | 0.4698 | 0.5424 | 0.4256 | 0.5363 | 0.6646 | 0.6274 | 0.7513 | 0.3277 | 0.4868 | 0.2426 | 0.5126 | 0.2803 | 0.6968 | 0.3803 | 0.7532 | 0.014 | 0.3682 | 0.2826 | 0.6432 | 0.0108 | 0.3857 | 0.0242 | 0.2839 |
85
+ | 37.4405 | 5.0 | 820 | 10.3133 | 0.2806 | 0.4547 | 0.2961 | 0.2328 | 0.2837 | 0.3547 | 0.2663 | 0.49 | 0.5555 | 0.4185 | 0.559 | 0.6984 | 0.6358 | 0.7531 | 0.3339 | 0.4863 | 0.2796 | 0.5238 | 0.378 | 0.6872 | 0.4073 | 0.7429 | 0.0215 | 0.3993 | 0.3853 | 0.6352 | 0.052 | 0.4714 | 0.0322 | 0.2999 |
86
+ | 37.4405 | 6.0 | 984 | 9.7662 | 0.3054 | 0.5185 | 0.3195 | 0.2689 | 0.3215 | 0.3844 | 0.2758 | 0.5107 | 0.5703 | 0.4374 | 0.5696 | 0.7159 | 0.6561 | 0.7597 | 0.3405 | 0.512 | 0.3027 | 0.5322 | 0.4172 | 0.6963 | 0.4722 | 0.7552 | 0.0877 | 0.4493 | 0.3186 | 0.6364 | 0.1171 | 0.4786 | 0.0362 | 0.3127 |
87
+ | 16.8251 | 7.0 | 1148 | 9.4750 | 0.3509 | 0.5729 | 0.378 | 0.2607 | 0.3567 | 0.4598 | 0.2975 | 0.5198 | 0.5849 | 0.4307 | 0.5936 | 0.7209 | 0.6682 | 0.7642 | 0.3432 | 0.5166 | 0.3392 | 0.5502 | 0.4744 | 0.7 | 0.5145 | 0.7597 | 0.1268 | 0.4709 | 0.4179 | 0.6591 | 0.234 | 0.5357 | 0.0402 | 0.3079 |
88
+ | 16.8251 | 8.0 | 1312 | 9.3075 | 0.3621 | 0.5918 | 0.3863 | 0.2941 | 0.3639 | 0.4724 | 0.3053 | 0.5325 | 0.5902 | 0.4475 | 0.5981 | 0.725 | 0.661 | 0.7617 | 0.3501 | 0.5143 | 0.3634 | 0.5789 | 0.4905 | 0.697 | 0.4751 | 0.761 | 0.1863 | 0.4818 | 0.4888 | 0.6966 | 0.2019 | 0.5143 | 0.0414 | 0.3065 |
89
+ | 16.8251 | 9.0 | 1476 | 9.0699 | 0.3982 | 0.6327 | 0.4195 | 0.2943 | 0.3976 | 0.5432 | 0.3114 | 0.5443 | 0.5945 | 0.4646 | 0.6006 | 0.7245 | 0.6756 | 0.7699 | 0.3777 | 0.5289 | 0.3615 | 0.5621 | 0.5296 | 0.7048 | 0.5267 | 0.7805 | 0.3019 | 0.5331 | 0.5024 | 0.6875 | 0.2603 | 0.4643 | 0.0481 | 0.3191 |
90
+ | 14.4838 | 10.0 | 1640 | 9.1070 | 0.3937 | 0.6283 | 0.4267 | 0.299 | 0.4035 | 0.5337 | 0.3202 | 0.5435 | 0.5916 | 0.4465 | 0.6109 | 0.7201 | 0.6589 | 0.7591 | 0.3683 | 0.5246 | 0.4087 | 0.5816 | 0.5225 | 0.6957 | 0.5485 | 0.7799 | 0.2963 | 0.5182 | 0.5203 | 0.7023 | 0.1765 | 0.4643 | 0.043 | 0.2987 |
91
+ | 14.4838 | 11.0 | 1804 | 8.7969 | 0.4133 | 0.6423 | 0.4569 | 0.3227 | 0.4218 | 0.531 | 0.3265 | 0.5557 | 0.6101 | 0.4809 | 0.6198 | 0.7311 | 0.6711 | 0.7751 | 0.3739 | 0.5227 | 0.4002 | 0.5989 | 0.5847 | 0.7192 | 0.5839 | 0.8032 | 0.3116 | 0.5459 | 0.551 | 0.7216 | 0.1918 | 0.4929 | 0.0517 | 0.3117 |
92
+ | 14.4838 | 12.0 | 1968 | 8.8831 | 0.4177 | 0.6518 | 0.463 | 0.3252 | 0.4204 | 0.5484 | 0.3257 | 0.5516 | 0.6058 | 0.4717 | 0.6139 | 0.7435 | 0.6465 | 0.7714 | 0.3627 | 0.5198 | 0.4031 | 0.5835 | 0.5675 | 0.7057 | 0.5809 | 0.7877 | 0.3579 | 0.5392 | 0.5302 | 0.7068 | 0.2677 | 0.5429 | 0.0431 | 0.2951 |
93
+ | 13.3813 | 13.0 | 2132 | 8.9170 | 0.4163 | 0.6465 | 0.4435 | 0.3343 | 0.429 | 0.5332 | 0.3306 | 0.5567 | 0.6078 | 0.4753 | 0.6236 | 0.7246 | 0.6017 | 0.7739 | 0.3715 | 0.5155 | 0.4009 | 0.5927 | 0.5681 | 0.7119 | 0.601 | 0.7942 | 0.3706 | 0.5608 | 0.5597 | 0.6932 | 0.2296 | 0.5143 | 0.0437 | 0.3136 |
94
+ | 13.3813 | 14.0 | 2296 | 8.9692 | 0.4215 | 0.6542 | 0.4692 | 0.3065 | 0.4345 | 0.5607 | 0.3332 | 0.55 | 0.6101 | 0.4498 | 0.6348 | 0.7302 | 0.5946 | 0.7705 | 0.3571 | 0.4854 | 0.4099 | 0.5923 | 0.5491 | 0.6895 | 0.6044 | 0.7825 | 0.3688 | 0.5547 | 0.5361 | 0.7023 | 0.3414 | 0.6143 | 0.032 | 0.2991 |
95
+ | 13.3813 | 15.0 | 2460 | 9.0191 | 0.4286 | 0.653 | 0.4774 | 0.3172 | 0.444 | 0.5587 | 0.3312 | 0.5625 | 0.6119 | 0.4572 | 0.6351 | 0.7368 | 0.5858 | 0.7684 | 0.3725 | 0.5138 | 0.4133 | 0.59 | 0.5664 | 0.7096 | 0.6089 | 0.8006 | 0.3946 | 0.5581 | 0.5826 | 0.7318 | 0.2959 | 0.5429 | 0.0371 | 0.2918 |
96
+ | 12.7559 | 16.0 | 2624 | 8.8599 | 0.4395 | 0.6774 | 0.4793 | 0.3384 | 0.4537 | 0.5631 | 0.3395 | 0.5638 | 0.6122 | 0.4709 | 0.6303 | 0.7336 | 0.6044 | 0.7735 | 0.3824 | 0.5192 | 0.4174 | 0.5862 | 0.5832 | 0.7087 | 0.6247 | 0.7961 | 0.4008 | 0.5628 | 0.5748 | 0.7341 | 0.3311 | 0.5429 | 0.0368 | 0.2866 |
97
+ | 12.7559 | 17.0 | 2788 | 8.8447 | 0.4403 | 0.6727 | 0.4992 | 0.3302 | 0.4428 | 0.5722 | 0.3375 | 0.56 | 0.6098 | 0.4632 | 0.6231 | 0.7357 | 0.6188 | 0.7731 | 0.3795 | 0.5147 | 0.4218 | 0.5816 | 0.5656 | 0.6986 | 0.632 | 0.7955 | 0.4008 | 0.5797 | 0.5675 | 0.708 | 0.3437 | 0.5286 | 0.0328 | 0.3085 |
98
+ | 12.7559 | 18.0 | 2952 | 8.8752 | 0.4472 | 0.6858 | 0.4983 | 0.3472 | 0.4535 | 0.5831 | 0.3408 | 0.5686 | 0.6111 | 0.4693 | 0.6283 | 0.7359 | 0.6328 | 0.7808 | 0.3748 | 0.5083 | 0.4284 | 0.5897 | 0.5811 | 0.7002 | 0.664 | 0.7883 | 0.4284 | 0.5757 | 0.5806 | 0.7239 | 0.3017 | 0.5357 | 0.0332 | 0.2973 |
99
+ | 12.3803 | 19.0 | 3116 | 8.7937 | 0.4535 | 0.6863 | 0.4951 | 0.3494 | 0.4585 | 0.5913 | 0.3462 | 0.5769 | 0.6261 | 0.4778 | 0.6486 | 0.7365 | 0.6397 | 0.7817 | 0.374 | 0.5058 | 0.4084 | 0.5789 | 0.6043 | 0.724 | 0.6619 | 0.8045 | 0.4323 | 0.6041 | 0.6065 | 0.7511 | 0.3214 | 0.5786 | 0.0336 | 0.3061 |
100
+ | 12.3803 | 20.0 | 3280 | 8.7272 | 0.463 | 0.7008 | 0.5113 | 0.3514 | 0.4674 | 0.5999 | 0.3472 | 0.5839 | 0.6248 | 0.4795 | 0.6422 | 0.7463 | 0.6451 | 0.7783 | 0.3761 | 0.518 | 0.447 | 0.6034 | 0.591 | 0.7055 | 0.6614 | 0.8123 | 0.4576 | 0.6115 | 0.6201 | 0.7375 | 0.328 | 0.5571 | 0.0409 | 0.2991 |
101
+ | 12.3803 | 21.0 | 3444 | 8.8055 | 0.448 | 0.6791 | 0.4896 | 0.3402 | 0.4657 | 0.5788 | 0.3444 | 0.5658 | 0.6074 | 0.4563 | 0.6359 | 0.7249 | 0.6441 | 0.7784 | 0.3818 | 0.5058 | 0.4062 | 0.5828 | 0.5866 | 0.6941 | 0.6459 | 0.7968 | 0.4307 | 0.5885 | 0.6095 | 0.733 | 0.2954 | 0.5071 | 0.0313 | 0.2802 |
102
+ | 12.0491 | 22.0 | 3608 | 8.7340 | 0.4626 | 0.6937 | 0.5258 | 0.3423 | 0.4707 | 0.6071 | 0.3483 | 0.5741 | 0.6135 | 0.4486 | 0.6403 | 0.7432 | 0.6535 | 0.7761 | 0.3713 | 0.4972 | 0.4414 | 0.5958 | 0.6041 | 0.6986 | 0.6706 | 0.8006 | 0.435 | 0.5986 | 0.6053 | 0.725 | 0.3414 | 0.55 | 0.0412 | 0.2794 |
103
+ | 12.0491 | 23.0 | 3772 | 8.7322 | 0.4673 | 0.7001 | 0.5319 | 0.3524 | 0.4728 | 0.6071 | 0.3475 | 0.5734 | 0.6146 | 0.4571 | 0.6367 | 0.7371 | 0.6625 | 0.7765 | 0.3702 | 0.494 | 0.4474 | 0.6011 | 0.6078 | 0.7185 | 0.6793 | 0.8006 | 0.4671 | 0.6108 | 0.5972 | 0.7227 | 0.3354 | 0.5286 | 0.0388 | 0.2785 |
104
+ | 12.0491 | 24.0 | 3936 | 8.7272 | 0.4689 | 0.7089 | 0.5159 | 0.3576 | 0.4778 | 0.6078 | 0.3516 | 0.5775 | 0.6175 | 0.4617 | 0.6409 | 0.7449 | 0.6714 | 0.7774 | 0.3769 | 0.4998 | 0.4521 | 0.6011 | 0.6039 | 0.7014 | 0.6728 | 0.8039 | 0.4508 | 0.5953 | 0.5955 | 0.7364 | 0.3659 | 0.5571 | 0.0313 | 0.2849 |
105
+ | 11.7826 | 25.0 | 4100 | 8.6300 | 0.4744 | 0.7087 | 0.5409 | 0.3488 | 0.4835 | 0.6099 | 0.3531 | 0.5863 | 0.6296 | 0.4622 | 0.6505 | 0.7535 | 0.6793 | 0.7805 | 0.373 | 0.4971 | 0.451 | 0.6115 | 0.6188 | 0.7098 | 0.6701 | 0.8097 | 0.4555 | 0.6088 | 0.6109 | 0.7375 | 0.3699 | 0.6286 | 0.0411 | 0.2831 |
106
+ | 11.7826 | 26.0 | 4264 | 8.6652 | 0.4636 | 0.6971 | 0.5039 | 0.3464 | 0.4771 | 0.6009 | 0.348 | 0.5679 | 0.6122 | 0.4574 | 0.6393 | 0.7303 | 0.6717 | 0.7762 | 0.3722 | 0.4914 | 0.4559 | 0.5931 | 0.6064 | 0.6991 | 0.6744 | 0.8091 | 0.4531 | 0.6074 | 0.6012 | 0.7375 | 0.3 | 0.5143 | 0.0371 | 0.2816 |
107
+ | 11.7826 | 27.0 | 4428 | 8.5516 | 0.4778 | 0.7179 | 0.5298 | 0.3636 | 0.4869 | 0.6157 | 0.3575 | 0.5829 | 0.6228 | 0.4695 | 0.6455 | 0.7471 | 0.6797 | 0.7842 | 0.3777 | 0.4911 | 0.4596 | 0.6119 | 0.6184 | 0.7151 | 0.6746 | 0.8091 | 0.4631 | 0.6068 | 0.6189 | 0.7364 | 0.3633 | 0.5643 | 0.045 | 0.2864 |
108
+ | 11.5542 | 28.0 | 4592 | 8.6945 | 0.4666 | 0.6992 | 0.5195 | 0.3515 | 0.4755 | 0.6043 | 0.3528 | 0.5726 | 0.6089 | 0.4526 | 0.6278 | 0.7461 | 0.6662 | 0.7751 | 0.3616 | 0.4722 | 0.437 | 0.5908 | 0.6069 | 0.7091 | 0.6784 | 0.8091 | 0.4569 | 0.5926 | 0.6035 | 0.733 | 0.3532 | 0.5286 | 0.0355 | 0.27 |
109
+ | 11.5542 | 29.0 | 4756 | 8.6367 | 0.4685 | 0.699 | 0.5258 | 0.3498 | 0.481 | 0.6079 | 0.3535 | 0.578 | 0.6138 | 0.4516 | 0.6392 | 0.7482 | 0.6763 | 0.7762 | 0.3706 | 0.4894 | 0.4522 | 0.5912 | 0.6024 | 0.6954 | 0.6819 | 0.8188 | 0.463 | 0.6068 | 0.6152 | 0.7455 | 0.3216 | 0.5357 | 0.0338 | 0.2655 |
110
+ | 11.5542 | 30.0 | 4920 | 8.5968 | 0.4753 | 0.7076 | 0.5274 | 0.3606 | 0.4846 | 0.6102 | 0.3549 | 0.5774 | 0.6142 | 0.4705 | 0.6374 | 0.7341 | 0.6791 | 0.7811 | 0.3721 | 0.4892 | 0.4541 | 0.6038 | 0.6135 | 0.7107 | 0.6809 | 0.8065 | 0.4895 | 0.625 | 0.6366 | 0.75 | 0.3151 | 0.4857 | 0.0368 | 0.2758 |
111
+ | 11.3582 | 31.0 | 5084 | 8.5456 | 0.482 | 0.7143 | 0.5492 | 0.3686 | 0.4913 | 0.6095 | 0.3594 | 0.5863 | 0.6279 | 0.4868 | 0.6507 | 0.7361 | 0.686 | 0.784 | 0.375 | 0.5032 | 0.4567 | 0.6123 | 0.6278 | 0.7228 | 0.6849 | 0.8156 | 0.4847 | 0.6297 | 0.6394 | 0.7489 | 0.3426 | 0.55 | 0.0408 | 0.2847 |
112
+ | 11.3582 | 32.0 | 5248 | 8.4824 | 0.4887 | 0.7193 | 0.5543 | 0.3679 | 0.4987 | 0.6223 | 0.361 | 0.5938 | 0.6366 | 0.4799 | 0.6597 | 0.7547 | 0.6914 | 0.7845 | 0.3822 | 0.5117 | 0.4624 | 0.6149 | 0.6299 | 0.7253 | 0.6885 | 0.8169 | 0.4856 | 0.6257 | 0.6521 | 0.7636 | 0.3661 | 0.6071 | 0.0398 | 0.2797 |
113
+ | 11.3582 | 33.0 | 5412 | 8.5231 | 0.4861 | 0.715 | 0.5624 | 0.3663 | 0.494 | 0.6221 | 0.3606 | 0.5865 | 0.6276 | 0.4749 | 0.65 | 0.7509 | 0.6874 | 0.7856 | 0.3761 | 0.5029 | 0.4603 | 0.6084 | 0.6258 | 0.7162 | 0.6876 | 0.8169 | 0.4906 | 0.6236 | 0.6402 | 0.7432 | 0.3695 | 0.5786 | 0.0371 | 0.2731 |
114
+ | 11.2454 | 34.0 | 5576 | 8.5219 | 0.4866 | 0.7135 | 0.5551 | 0.3664 | 0.4931 | 0.6279 | 0.3597 | 0.5936 | 0.6342 | 0.4814 | 0.6551 | 0.7563 | 0.688 | 0.7841 | 0.3779 | 0.5054 | 0.4573 | 0.6184 | 0.6265 | 0.724 | 0.6867 | 0.8156 | 0.4793 | 0.6203 | 0.6328 | 0.7614 | 0.3964 | 0.6 | 0.0348 | 0.2789 |
115
+ | 11.2454 | 35.0 | 5740 | 8.5075 | 0.4864 | 0.7204 | 0.5455 | 0.3666 | 0.4945 | 0.6205 | 0.3602 | 0.5926 | 0.6357 | 0.4821 | 0.6573 | 0.7574 | 0.6899 | 0.7865 | 0.3743 | 0.5023 | 0.4587 | 0.6169 | 0.632 | 0.721 | 0.6872 | 0.824 | 0.4905 | 0.6331 | 0.6498 | 0.7784 | 0.3577 | 0.5786 | 0.038 | 0.2802 |
116
+ | 11.2454 | 36.0 | 5904 | 8.5390 | 0.4862 | 0.7149 | 0.5533 | 0.3655 | 0.4939 | 0.6294 | 0.3594 | 0.5924 | 0.6321 | 0.4775 | 0.653 | 0.7583 | 0.6867 | 0.7845 | 0.3757 | 0.4992 | 0.4606 | 0.6142 | 0.6265 | 0.7189 | 0.6892 | 0.8214 | 0.4882 | 0.627 | 0.6369 | 0.7545 | 0.3754 | 0.5929 | 0.0366 | 0.2764 |
117
+ | 11.157 | 37.0 | 6068 | 8.5368 | 0.4863 | 0.715 | 0.5546 | 0.3651 | 0.4936 | 0.6307 | 0.3599 | 0.5883 | 0.6284 | 0.4785 | 0.6489 | 0.7595 | 0.6867 | 0.7848 | 0.3755 | 0.5 | 0.4632 | 0.6138 | 0.6276 | 0.7185 | 0.6899 | 0.8227 | 0.4912 | 0.6277 | 0.6382 | 0.7534 | 0.3693 | 0.5571 | 0.0351 | 0.2779 |
118
+
119
+
120
+ ### Framework versions
121
+
122
+ - Transformers 4.50.0.dev0
123
+ - Pytorch 2.6.0+cu124
124
+ - Datasets 3.3.2
125
+ - Tokenizers 0.21.1
config.json ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_dropout": 0.0,
3
+ "activation_function": "silu",
4
+ "anchor_image_size": null,
5
+ "architectures": [
6
+ "RTDetrV2ForObjectDetection"
7
+ ],
8
+ "attention_dropout": 0.0,
9
+ "auxiliary_loss": true,
10
+ "backbone": null,
11
+ "backbone_config": {
12
+ "depths": [
13
+ 3,
14
+ 4,
15
+ 6,
16
+ 3
17
+ ],
18
+ "downsample_in_bottleneck": false,
19
+ "downsample_in_first_stage": false,
20
+ "embedding_size": 64,
21
+ "hidden_act": "relu",
22
+ "hidden_sizes": [
23
+ 256,
24
+ 512,
25
+ 1024,
26
+ 2048
27
+ ],
28
+ "layer_type": "bottleneck",
29
+ "model_type": "rt_detr_resnet",
30
+ "num_channels": 3,
31
+ "out_features": [
32
+ "stage2",
33
+ "stage3",
34
+ "stage4"
35
+ ],
36
+ "out_indices": [
37
+ 2,
38
+ 3,
39
+ 4
40
+ ],
41
+ "stage_names": [
42
+ "stem",
43
+ "stage1",
44
+ "stage2",
45
+ "stage3",
46
+ "stage4"
47
+ ]
48
+ },
49
+ "backbone_kwargs": null,
50
+ "batch_norm_eps": 1e-05,
51
+ "box_noise_scale": 1.0,
52
+ "d_model": 256,
53
+ "decoder_activation_function": "relu",
54
+ "decoder_attention_heads": 8,
55
+ "decoder_ffn_dim": 1024,
56
+ "decoder_in_channels": [
57
+ 256,
58
+ 256,
59
+ 256
60
+ ],
61
+ "decoder_layers": 6,
62
+ "decoder_method": "default",
63
+ "decoder_n_levels": 3,
64
+ "decoder_n_points": 4,
65
+ "decoder_offset_scale": 0.5,
66
+ "disable_custom_kernels": true,
67
+ "dropout": 0.0,
68
+ "encode_proj_layers": [
69
+ 2
70
+ ],
71
+ "encoder_activation_function": "gelu",
72
+ "encoder_attention_heads": 8,
73
+ "encoder_ffn_dim": 1024,
74
+ "encoder_hidden_dim": 256,
75
+ "encoder_in_channels": [
76
+ 512,
77
+ 1024,
78
+ 2048
79
+ ],
80
+ "encoder_layers": 1,
81
+ "eos_coefficient": 0.0001,
82
+ "eval_size": null,
83
+ "feat_strides": [
84
+ 8,
85
+ 16,
86
+ 32
87
+ ],
88
+ "focal_loss_alpha": 0.75,
89
+ "focal_loss_gamma": 2.0,
90
+ "freeze_backbone_batch_norms": true,
91
+ "hidden_expansion": 1.0,
92
+ "id2label": {
93
+ "0": "Car",
94
+ "1": "Pedestrian",
95
+ "2": "Cyclist",
96
+ "3": "Van",
97
+ "4": "Truck",
98
+ "5": "Misc",
99
+ "6": "Tram",
100
+ "7": "Person_sitting",
101
+ "8": "DontCare"
102
+ },
103
+ "initializer_bias_prior_prob": null,
104
+ "initializer_range": 0.01,
105
+ "is_encoder_decoder": true,
106
+ "label2id": {
107
+ "Car": 0,
108
+ "Cyclist": 2,
109
+ "DontCare": 8,
110
+ "Misc": 5,
111
+ "Pedestrian": 1,
112
+ "Person_sitting": 7,
113
+ "Tram": 6,
114
+ "Truck": 4,
115
+ "Van": 3
116
+ },
117
+ "label_noise_ratio": 0.5,
118
+ "layer_norm_eps": 1e-05,
119
+ "learn_initial_query": false,
120
+ "matcher_alpha": 0.25,
121
+ "matcher_bbox_cost": 5.0,
122
+ "matcher_class_cost": 2.0,
123
+ "matcher_gamma": 2.0,
124
+ "matcher_giou_cost": 2.0,
125
+ "model_type": "rt_detr_v2",
126
+ "normalize_before": false,
127
+ "num_denoising": 100,
128
+ "num_feature_levels": 3,
129
+ "num_queries": 300,
130
+ "positional_encoding_temperature": 10000,
131
+ "torch_dtype": "float32",
132
+ "transformers_version": "4.50.0.dev0",
133
+ "use_focal_loss": true,
134
+ "use_pretrained_backbone": false,
135
+ "use_timm_backbone": false,
136
+ "weight_loss_bbox": 5.0,
137
+ "weight_loss_giou": 2.0,
138
+ "weight_loss_vfl": 1.0,
139
+ "with_box_refine": true
140
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1fe302191e4d0a511e17bf7ff4b4764f6ad974082b11ac288913fc399a3b69e
3
+ size 171593228
preprocessor_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_annotations": true,
3
+ "do_normalize": false,
4
+ "do_pad": false,
5
+ "do_rescale": true,
6
+ "do_resize": true,
7
+ "format": "coco_detection",
8
+ "image_mean": [
9
+ 0.485,
10
+ 0.456,
11
+ 0.406
12
+ ],
13
+ "image_processor_type": "RTDetrImageProcessor",
14
+ "image_std": [
15
+ 0.229,
16
+ 0.224,
17
+ 0.225
18
+ ],
19
+ "pad_size": null,
20
+ "resample": 2,
21
+ "rescale_factor": 0.00392156862745098,
22
+ "size": {
23
+ "height": 640,
24
+ "width": 640
25
+ }
26
+ }
runs/Mar14_13-01-02_dd1bdd9cfb3f/events.out.tfevents.1741957264.dd1bdd9cfb3f.1263.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fee2c27f18cb2bfe8a9da583bb7379e392745a1914578cb305c712b0f67cc6a
3
+ size 80699
runs/Mar14_13-01-02_dd1bdd9cfb3f/events.out.tfevents.1741965578.dd1bdd9cfb3f.1263.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9defeeed5555ef44eb6c50c58440dbf00d9a5b746f184f488fa54cef8cf2c23
3
+ size 3896
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f46cee879bc7df28d6171a10cd18de538518d98d7ade19ba4ced58dd8b7f9a43
3
+ size 5368