Upload ./ with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
library_name: sklearn
|
4 |
+
tags:
|
5 |
+
- tabular-classification
|
6 |
+
- baseline-trainer
|
7 |
+
---
|
8 |
+
|
9 |
+
## Baseline Model trained on Airlinesuiztcxpg to apply classification on Delay
|
10 |
+
|
11 |
+
**Metrics of the best model:**
|
12 |
+
|
13 |
+
accuracy 0.612210
|
14 |
+
|
15 |
+
average_precision 0.405509
|
16 |
+
|
17 |
+
roc_auc 0.635865
|
18 |
+
|
19 |
+
recall_macro 0.594188
|
20 |
+
|
21 |
+
f1_macro 0.569725
|
22 |
+
|
23 |
+
Name: LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000), dtype: float64
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
**See model plot below:**
|
28 |
+
|
29 |
+
<style>#sk-container-id-6 {color: black;background-color: white;}#sk-container-id-6 pre{padding: 0;}#sk-container-id-6 div.sk-toggleable {background-color: white;}#sk-container-id-6 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-6 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-6 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-6 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-6 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-6 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-6 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-6 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-6 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-6 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-6 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-6 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-6 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-6 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-6 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-6 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-6 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-6 div.sk-item {position: relative;z-index: 1;}#sk-container-id-6 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-6 div.sk-item::before, #sk-container-id-6 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-6 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-6 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-6 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-6 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-6 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-6 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-6 div.sk-label-container {text-align: center;}#sk-container-id-6 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-6 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-6" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('easypreprocessor',EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless
|
30 |
+
Airline False False False ... False False False
|
31 |
+
Flight True False False ... False False False
|
32 |
+
AirportFrom False False False ... False True False
|
33 |
+
AirportTo False False False ... False True False
|
34 |
+
Time True False False ... False False False
|
35 |
+
Length True False False ... False False False[6 rows x 7 columns])),('logisticregression',LogisticRegression(C=0.1, class_weight='balanced',max_iter=1000))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-16" type="checkbox" ><label for="sk-estimator-id-16" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('easypreprocessor',EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless
|
36 |
+
Airline False False False ... False False False
|
37 |
+
Flight True False False ... False False False
|
38 |
+
AirportFrom False False False ... False True False
|
39 |
+
AirportTo False False False ... False True False
|
40 |
+
Time True False False ... False False False
|
41 |
+
Length True False False ... False False False[6 rows x 7 columns])),('logisticregression',LogisticRegression(C=0.1, class_weight='balanced',max_iter=1000))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-17" type="checkbox" ><label for="sk-estimator-id-17" class="sk-toggleable__label sk-toggleable__label-arrow">EasyPreprocessor</label><div class="sk-toggleable__content"><pre>EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless
|
42 |
+
Airline False False False ... False False False
|
43 |
+
Flight True False False ... False False False
|
44 |
+
AirportFrom False False False ... False True False
|
45 |
+
AirportTo False False False ... False True False
|
46 |
+
Time True False False ... False False False
|
47 |
+
Length True False False ... False False False[6 rows x 7 columns])</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-18" type="checkbox" ><label for="sk-estimator-id-18" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000)</pre></div></div></div></div></div></div></div>
|
48 |
+
|
49 |
+
**Disclaimer:** This model is trained with dabl library as a baseline, for better results, use [AutoTrain](https://huggingface.co/autotrain).
|
50 |
+
|
51 |
+
**Logs of training** including the models tried in the process can be found in logs.txt
|
clf.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d2f2e4d05ea98fb2c4e1732ae2f139267097824d50b24c4ca07c0be897b9e26
|
3 |
+
size 8476
|
logs.txt
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Logging training
|
2 |
+
Running DummyClassifier()
|
3 |
+
accuracy: 0.732 average_precision: 0.268 roc_auc: 0.500 recall_macro: 0.500 f1_macro: 0.422
|
4 |
+
=== new best DummyClassifier() (using recall_macro):
|
5 |
+
accuracy: 0.732 average_precision: 0.268 roc_auc: 0.500 recall_macro: 0.500 f1_macro: 0.422
|
6 |
+
|
7 |
+
Running GaussianNB()
|
8 |
+
accuracy: 0.466 average_precision: 0.361 roc_auc: 0.619 recall_macro: 0.570 f1_macro: 0.464
|
9 |
+
=== new best GaussianNB() (using recall_macro):
|
10 |
+
accuracy: 0.466 average_precision: 0.361 roc_auc: 0.619 recall_macro: 0.570 f1_macro: 0.464
|
11 |
+
|
12 |
+
Running MultinomialNB()
|
13 |
+
accuracy: 0.732 average_precision: 0.377 roc_auc: 0.614 recall_macro: 0.500 f1_macro: 0.422
|
14 |
+
Running DecisionTreeClassifier(class_weight='balanced', max_depth=1)
|
15 |
+
accuracy: 0.699 average_precision: 0.305 roc_auc: 0.561 recall_macro: 0.561 f1_macro: 0.562
|
16 |
+
Running DecisionTreeClassifier(class_weight='balanced', max_depth=5)
|
17 |
+
accuracy: 0.630 average_precision: 0.347 roc_auc: 0.579 recall_macro: 0.564 f1_macro: 0.550
|
18 |
+
Running DecisionTreeClassifier(class_weight='balanced', min_impurity_decrease=0.01)
|
19 |
+
accuracy: 0.699 average_precision: 0.305 roc_auc: 0.561 recall_macro: 0.561 f1_macro: 0.562
|
20 |
+
Running LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000)
|
21 |
+
accuracy: 0.612 average_precision: 0.406 roc_auc: 0.636 recall_macro: 0.594 f1_macro: 0.570
|
22 |
+
=== new best LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) (using recall_macro):
|
23 |
+
accuracy: 0.612 average_precision: 0.406 roc_auc: 0.636 recall_macro: 0.594 f1_macro: 0.570
|
24 |
+
|
25 |
+
Running LogisticRegression(C=1, class_weight='balanced', max_iter=1000)
|
26 |
+
accuracy: 0.600 average_precision: 0.404 roc_auc: 0.635 recall_macro: 0.592 f1_macro: 0.563
|
27 |
+
|
28 |
+
Best model:
|
29 |
+
LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000)
|
30 |
+
Best Scores:
|
31 |
+
accuracy: 0.612 average_precision: 0.406 roc_auc: 0.636 recall_macro: 0.594 f1_macro: 0.570
|