Kluuking commited on
Commit
eeed2c0
1 Parent(s): 00ad4cc

Upload ./ with huggingface_hub

Browse files
Files changed (3) hide show
  1. README.md +51 -0
  2. clf.pkl +3 -0
  3. logs.txt +31 -0
README.md ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: sklearn
4
+ tags:
5
+ - tabular-classification
6
+ - baseline-trainer
7
+ ---
8
+
9
+ ## Baseline Model trained on Airlinesuiztcxpg to apply classification on Delay
10
+
11
+ **Metrics of the best model:**
12
+
13
+ accuracy 0.612210
14
+
15
+ average_precision 0.405509
16
+
17
+ roc_auc 0.635865
18
+
19
+ recall_macro 0.594188
20
+
21
+ f1_macro 0.569725
22
+
23
+ Name: LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000), dtype: float64
24
+
25
+
26
+
27
+ **See model plot below:**
28
+
29
+ <style>#sk-container-id-6 {color: black;background-color: white;}#sk-container-id-6 pre{padding: 0;}#sk-container-id-6 div.sk-toggleable {background-color: white;}#sk-container-id-6 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-6 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-6 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-6 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-6 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-6 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-6 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-6 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-6 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-6 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-6 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-6 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-6 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-6 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-6 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-6 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-6 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-6 div.sk-item {position: relative;z-index: 1;}#sk-container-id-6 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-6 div.sk-item::before, #sk-container-id-6 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-6 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-6 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-6 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-6 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-6 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-6 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-6 div.sk-label-container {text-align: center;}#sk-container-id-6 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-6 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-6" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless
30
+ Airline False False False ... False False False
31
+ Flight True False False ... False False False
32
+ AirportFrom False False False ... False True False
33
+ AirportTo False False False ... False True False
34
+ Time True False False ... False False False
35
+ Length True False False ... False False False[6 rows x 7 columns])),(&#x27;logisticregression&#x27;,LogisticRegression(C=0.1, class_weight=&#x27;balanced&#x27;,max_iter=1000))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-16" type="checkbox" ><label for="sk-estimator-id-16" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless
36
+ Airline False False False ... False False False
37
+ Flight True False False ... False False False
38
+ AirportFrom False False False ... False True False
39
+ AirportTo False False False ... False True False
40
+ Time True False False ... False False False
41
+ Length True False False ... False False False[6 rows x 7 columns])),(&#x27;logisticregression&#x27;,LogisticRegression(C=0.1, class_weight=&#x27;balanced&#x27;,max_iter=1000))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-17" type="checkbox" ><label for="sk-estimator-id-17" class="sk-toggleable__label sk-toggleable__label-arrow">EasyPreprocessor</label><div class="sk-toggleable__content"><pre>EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless
42
+ Airline False False False ... False False False
43
+ Flight True False False ... False False False
44
+ AirportFrom False False False ... False True False
45
+ AirportTo False False False ... False True False
46
+ Time True False False ... False False False
47
+ Length True False False ... False False False[6 rows x 7 columns])</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-18" type="checkbox" ><label for="sk-estimator-id-18" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression(C=0.1, class_weight=&#x27;balanced&#x27;, max_iter=1000)</pre></div></div></div></div></div></div></div>
48
+
49
+ **Disclaimer:** This model is trained with dabl library as a baseline, for better results, use [AutoTrain](https://huggingface.co/autotrain).
50
+
51
+ **Logs of training** including the models tried in the process can be found in logs.txt
clf.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d2f2e4d05ea98fb2c4e1732ae2f139267097824d50b24c4ca07c0be897b9e26
3
+ size 8476
logs.txt ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Logging training
2
+ Running DummyClassifier()
3
+ accuracy: 0.732 average_precision: 0.268 roc_auc: 0.500 recall_macro: 0.500 f1_macro: 0.422
4
+ === new best DummyClassifier() (using recall_macro):
5
+ accuracy: 0.732 average_precision: 0.268 roc_auc: 0.500 recall_macro: 0.500 f1_macro: 0.422
6
+
7
+ Running GaussianNB()
8
+ accuracy: 0.466 average_precision: 0.361 roc_auc: 0.619 recall_macro: 0.570 f1_macro: 0.464
9
+ === new best GaussianNB() (using recall_macro):
10
+ accuracy: 0.466 average_precision: 0.361 roc_auc: 0.619 recall_macro: 0.570 f1_macro: 0.464
11
+
12
+ Running MultinomialNB()
13
+ accuracy: 0.732 average_precision: 0.377 roc_auc: 0.614 recall_macro: 0.500 f1_macro: 0.422
14
+ Running DecisionTreeClassifier(class_weight='balanced', max_depth=1)
15
+ accuracy: 0.699 average_precision: 0.305 roc_auc: 0.561 recall_macro: 0.561 f1_macro: 0.562
16
+ Running DecisionTreeClassifier(class_weight='balanced', max_depth=5)
17
+ accuracy: 0.630 average_precision: 0.347 roc_auc: 0.579 recall_macro: 0.564 f1_macro: 0.550
18
+ Running DecisionTreeClassifier(class_weight='balanced', min_impurity_decrease=0.01)
19
+ accuracy: 0.699 average_precision: 0.305 roc_auc: 0.561 recall_macro: 0.561 f1_macro: 0.562
20
+ Running LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000)
21
+ accuracy: 0.612 average_precision: 0.406 roc_auc: 0.636 recall_macro: 0.594 f1_macro: 0.570
22
+ === new best LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) (using recall_macro):
23
+ accuracy: 0.612 average_precision: 0.406 roc_auc: 0.636 recall_macro: 0.594 f1_macro: 0.570
24
+
25
+ Running LogisticRegression(C=1, class_weight='balanced', max_iter=1000)
26
+ accuracy: 0.600 average_precision: 0.404 roc_auc: 0.635 recall_macro: 0.592 f1_macro: 0.563
27
+
28
+ Best model:
29
+ LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000)
30
+ Best Scores:
31
+ accuracy: 0.612 average_precision: 0.406 roc_auc: 0.636 recall_macro: 0.594 f1_macro: 0.570