KoichiYasuoka commited on
Commit
9d86fe5
·
1 Parent(s): a0121d1

POS-tagging only

Browse files
Files changed (1) hide show
  1. README.md +1 -18
README.md CHANGED
@@ -6,7 +6,6 @@ tags:
6
  - "token-classification"
7
  - "pos"
8
  - "wikipedia"
9
- - "dependency-parsing"
10
  datasets:
11
  - "universal_dependencies"
12
  license: "apache-2.0"
@@ -19,7 +18,7 @@ widget:
19
 
20
  ## Model Description
21
 
22
- This is a BERT model pre-trained on Thai Wikipedia texts for POS-tagging and dependency-parsing, derived from [bert-base-th-cased](https://huggingface.co/Geotrend/bert-base-th-cased). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech).
23
 
24
  ## How to Use
25
 
@@ -28,21 +27,5 @@ import torch
28
  from transformers import AutoTokenizer,AutoModelForTokenClassification
29
  tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-base-thai-upos")
30
  model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/bert-base-thai-upos")
31
- s="หลายหัวดีกว่าหัวเดียว"
32
- t=tokenizer.tokenize(s)
33
- p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]]
34
- print(list(zip(t,p)))
35
  ```
36
 
37
- or
38
-
39
- ```py
40
- import esupar
41
- nlp=esupar.load("KoichiYasuoka/bert-base-thai-upos")
42
- print(nlp("หลายหัวดีกว่าหัวเดียว"))
43
- ```
44
-
45
- ## See Also
46
-
47
- [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa models
48
-
 
6
  - "token-classification"
7
  - "pos"
8
  - "wikipedia"
 
9
  datasets:
10
  - "universal_dependencies"
11
  license: "apache-2.0"
 
18
 
19
  ## Model Description
20
 
21
+ This is a BERT model pre-trained on Thai Wikipedia texts for POS-tagging, derived from [bert-base-th-cased](https://huggingface.co/Geotrend/bert-base-th-cased). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech).
22
 
23
  ## How to Use
24
 
 
27
  from transformers import AutoTokenizer,AutoModelForTokenClassification
28
  tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-base-thai-upos")
29
  model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/bert-base-thai-upos")
 
 
 
 
30
  ```
31