#! /usr/bin/python3 #pip3 install transformers accelerate deepspeed triton datasets fugashi unidic-lite tgt="modernbert-base-japanese-wikipedia" import os,json os.system(""" if test -d transformers then : else git clone --depth=1 https://github.com/huggingface/transformers transformers-all ln -s transformers-all/src/transformers transformers fi test -d ModernBERT-base || git clone --depth=1 https://huggingface.co/answerdotai/ModernBERT-base test -f ModernBERT-base/configuration_modernbert.py || sed 's/^from \\.\\.\\./from transformers./' transformers/models/modernbert/configuration_modernbert.py > ModernBERT-base/configuration_modernbert.py test -f ModernBERT-base/modeling_modernbert.py || sed -e 's/^from \\.\\.\\./from transformers./' -e 's/^from .* import is_triton_available/import importlib\\nis_triton_available = lambda: importlib.util.find_spec("triton") is not None/' transformers/models/modernbert/modeling_modernbert.py > ModernBERT-base/modeling_modernbert.py """) with open("ModernBERT-base/config.json","r",encoding="utf-8") as r: d=json.load(r) if not "auto_map" in d: d["auto_map"]={ "AutoConfig":"configuration_modernbert.ModernBertConfig", "AutoModel":"modeling_modernbert.ModernBertModel", "AutoModelForMaskedLM":"modeling_modernbert.ModernBertForMaskedLM", "AutoModelForSequenceClassification":"modeling_modernbert.ModernBertForSequenceClassification", "AutoModelForTokenClassification":"modeling_modernbert.ModernBertForTokenClassification" } with open("ModernBERT-base/config.json","w",encoding="utf-8") as w: json.dump(d,w,indent=2) if not os.path.isfile("train.txt"): from datasets import load_dataset aug=lambda x:(x.replace("侠","俠").replace("倶","俱").replace("洗","冼").replace("剥","剝").replace("即","卽").replace("呑","吞").replace("呉","吳").replace("填","塡").replace("巣","巢").replace("徴","徵").replace("徳","德").replace("掲","揭").replace("撃","擊").replace("教","敎").replace("晩","晚").replace("横","橫").replace("歩","步").replace("歴","歷").replace("毎","每").replace("冷","泠").replace("渉","涉").replace("涙","淚").replace("清","淸").replace("渇","渴").replace("温","溫").replace("状","狀").replace("産","產").replace("痩","瘦").replace("禰","祢").replace("箪","簞").replace("緑","綠").replace("緒","緖").replace("縁","緣").replace("繋","繫").replace("莱","萊").replace("薫","薰").replace("虚","虛").replace("蝉","蟬").replace("説","說").replace("躯","軀").replace("郎","郞").replace("醤","醬").replace("録","錄").replace("錬","鍊").replace("間","閒").replace("頬","頰").replace("顛","顚").replace("鴎","鷗").replace("麺","麵").replace("黄","黃").replace("黒","黑").replace("叱","𠮟")) with open("train.txt","w",encoding="utf-8") as w: d,u,v=load_dataset("globis-university/aozorabunko-clean"),"","" for t in d["train"]: for s in t["text"].replace("。","。\n").replace("\u3000"," ").split("\n"): r=aug(s) if r!=s: if len(r)+len(v)<10000: v+=r else: print(v,file=w) v=r if len(s)+len(u)<10000: u+=s else: print(u,file=w) u=s print(u,v,file=w) d,u=load_dataset("wikimedia/wikipedia","20231101.ja"),"" for t in d["train"]: for s in t["text"].replace("。","。\n").replace("\u3000"," ").split("\n"): if len(s)+len(u)<10000: u+=s else: print(u,file=w) u=s print(u,file=w) os.system("test -s token.txt || fugashi -Owakati < train.txt > token.txt") from transformers import DebertaV2TokenizerFast if not os.path.isfile("tokenizer.json"): import urllib.request from tokenizers import Tokenizer,models,pre_tokenizers,normalizers,processors,decoders,trainers with urllib.request.urlopen("https://www.unicode.org/wg2/iso10646/edition6/data/JapaneseCoreKanji.txt") as r: joyo=[chr(int(t,16)) for t in r.read().decode().strip().split("\n") if not t.startswith("#")] spt=Tokenizer(models.Unigram()) spt.pre_tokenizer=pre_tokenizers.Sequence([pre_tokenizers.Whitespace(),pre_tokenizers.Punctuation()]) spt.normalizer=normalizers.Sequence([normalizers.Nmt(),normalizers.NFKC()]) spt.post_processor=processors.TemplateProcessing(single="[CLS] $A [SEP]",pair="[CLS] $A [SEP] $B:1 [SEP]:1",special_tokens=[("[CLS]",0),("[SEP]",2)]) spt.decoder=decoders.WordPiece(prefix="",cleanup=True) spt.train(trainer=trainers.UnigramTrainer(vocab_size=65000,max_piece_length=4,initial_alphabet=joyo,special_tokens=["[CLS]","[PAD]","[SEP]","[UNK]","[MASK]"],unk_token="[UNK]",n_sub_iterations=2),files=["token.txt"]) spt.save("tokenizer.json") tkz=DebertaV2TokenizerFast(tokenizer_file="tokenizer.json",split_by_punct=True,do_lower_case=False,keep_accents=True,vocab_file="/dev/null") tkz.save_pretrained(tgt) with open("train.py","w",encoding="utf-8") as w: print(f'#! /usr/bin/env deepspeed\ntgt="{tgt}"'+''' from transformers import DebertaV2TokenizerFast,ModernBertForMaskedLM,AutoConfig,DataCollatorForLanguageModeling,TrainingArguments,Trainer tkz=DebertaV2TokenizerFast.from_pretrained(tgt) c={"trust_remote_code":True,"vocab_size":len(tkz),"tokenizer_class":type(tkz).__name__} for k,v in tkz.special_tokens_map.items(): c[k+"_id"]=tkz.convert_tokens_to_ids(v) cfg=AutoConfig.from_pretrained("ModernBERT-base",**c) arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=1,output_dir=tgt,overwrite_output_dir=True,save_total_limit=2,save_safetensors=False) class ReadLineDS(object): def __init__(self,file,tokenizer): self.tokenizer=tokenizer with open(file,"r",encoding="utf-8") as r: self.lines=[s.strip() for s in r if s.strip()>""] __len__=lambda self:len(self.lines) __getitem__=lambda self,i:self.tokenizer(self.lines[i],truncation=True,add_special_tokens=True,max_length=8190) trn=Trainer(args=arg,data_collator=DataCollatorForLanguageModeling(tkz),model=ModernBertForMaskedLM(cfg),train_dataset=ReadLineDS("train.txt",tkz)) trn.train() trn.save_model(tgt)''',file=w) os.system("chmod 755 train.py ; ./train.py") os.system(f"cp ModernBERT-base/*.py {tgt}")