Commit
·
91a7f09
1
Parent(s):
fdafef3
initial release
Browse files- README.md +30 -0
- config.json +48 -0
- maker.py +25 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- "lzh"
|
4 |
+
tags:
|
5 |
+
- "classical chinese"
|
6 |
+
- "literary chinese"
|
7 |
+
- "ancient chinese"
|
8 |
+
- "masked-lm"
|
9 |
+
base_model: KoichiYasuoka/modernbert-small-classical-chinese-traditional
|
10 |
+
license: "apache-2.0"
|
11 |
+
pipeline_tag: "fill-mask"
|
12 |
+
mask_token: "[MASK]"
|
13 |
+
widget:
|
14 |
+
- text: "孟子[MASK]梁惠王"
|
15 |
+
---
|
16 |
+
|
17 |
+
# modernbert-small-classical-chinese
|
18 |
+
|
19 |
+
## Model Description
|
20 |
+
|
21 |
+
This is a ModernBERT model pre-trained on [Kanripo](https://www.kanripo.org) texts. Character-embeddings are enhanced into traditional/simplified characters. You can fine-tune `modernbert-small-classical-chinese` for downstream tasks, such as sentence-segmentation, POS-tagging, dependency-parsing, and so on.
|
22 |
+
|
23 |
+
## How to Use
|
24 |
+
|
25 |
+
```py
|
26 |
+
from transformers import AutoTokenizer,AutoModelForMaskedLM
|
27 |
+
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/modernbert-small-classical-chinese")
|
28 |
+
model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/modernbert-small-classical-chinese")
|
29 |
+
```
|
30 |
+
|
config.json
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "KoichiYasuoka/modernbert-small-classical-chinese-traditional",
|
3 |
+
"architectures": [
|
4 |
+
"ModernBertForMaskedLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 0,
|
9 |
+
"classifier_activation": "gelu",
|
10 |
+
"classifier_bias": false,
|
11 |
+
"classifier_dropout": 0.0,
|
12 |
+
"classifier_pooling": "mean",
|
13 |
+
"cls_token_id": 0,
|
14 |
+
"decoder_bias": true,
|
15 |
+
"deterministic_flash_attn": false,
|
16 |
+
"embedding_dropout": 0.0,
|
17 |
+
"eos_token_id": 2,
|
18 |
+
"global_attn_every_n_layers": 3,
|
19 |
+
"global_rope_theta": 160000.0,
|
20 |
+
"gradient_checkpointing": false,
|
21 |
+
"hidden_activation": "gelu",
|
22 |
+
"hidden_size": 256,
|
23 |
+
"initializer_cutoff_factor": 2.0,
|
24 |
+
"initializer_range": 0.02,
|
25 |
+
"intermediate_size": 768,
|
26 |
+
"layer_norm_eps": 1e-05,
|
27 |
+
"local_attention": 128,
|
28 |
+
"local_rope_theta": 10000.0,
|
29 |
+
"max_position_embeddings": 8192,
|
30 |
+
"mlp_bias": false,
|
31 |
+
"mlp_dropout": 0.0,
|
32 |
+
"model_type": "modernbert",
|
33 |
+
"norm_bias": false,
|
34 |
+
"norm_eps": 1e-05,
|
35 |
+
"num_attention_heads": 8,
|
36 |
+
"num_hidden_layers": 16,
|
37 |
+
"pad_token_id": 1,
|
38 |
+
"position_embedding_type": "absolute",
|
39 |
+
"reference_compile": false,
|
40 |
+
"repad_logits_with_grad": false,
|
41 |
+
"sep_token_id": 2,
|
42 |
+
"sparse_pred_ignore_index": -100,
|
43 |
+
"sparse_prediction": false,
|
44 |
+
"tokenizer_class": "BertTokenizerFast",
|
45 |
+
"torch_dtype": "float32",
|
46 |
+
"transformers_version": "4.48.3",
|
47 |
+
"vocab_size": 25078
|
48 |
+
}
|
maker.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#! /usr/bin/python3
|
2 |
+
src="KoichiYasuoka/modernbert-small-classical-chinese-traditional"
|
3 |
+
tgt="KoichiYasuoka/modernbert-small-classical-chinese"
|
4 |
+
import torch
|
5 |
+
from transformers import BertTokenizerFast,AutoModelForMaskedLM
|
6 |
+
from esupar.tradify import tradify
|
7 |
+
from tokenizers.pre_tokenizers import Sequence,Whitespace,Split
|
8 |
+
from tokenizers import Regex
|
9 |
+
tkz=BertTokenizerFast.from_pretrained(src)
|
10 |
+
mdl=AutoModelForMaskedLM.from_pretrained(src)
|
11 |
+
c=[(k,v) for k,v in tradify.items() if tkz.add_tokens([k,v])==1]
|
12 |
+
e=mdl.resize_token_embeddings(len(tkz))
|
13 |
+
with torch.no_grad():
|
14 |
+
for k,v in c:
|
15 |
+
t=sorted(tkz.convert_tokens_to_ids([k,v]))
|
16 |
+
e.weight[t[1],:]=e.weight[t[0],:]
|
17 |
+
mdl.set_input_embeddings(e)
|
18 |
+
mdl.save_pretrained(tgt,safe_serialization=False)
|
19 |
+
with open(tgt+"/vocab.txt","w",encoding="utf-8") as w:
|
20 |
+
print("\n".join(tkz.convert_ids_to_tokens(range(len(tkz)))),file=w)
|
21 |
+
s=["[CLS]","[PAD]","[SEP]","[UNK]","[MASK]"]
|
22 |
+
tkz=BertTokenizerFast(vocab_file=tgt+"/vocab.txt",never_split=s,do_lower_case=False,strip_accents=False,tokenize_chinese_chars=True)
|
23 |
+
tkz.backend_tokenizer.pre_tokenizer=Sequence([Whitespace(),Split(Regex("."),"isolated")])
|
24 |
+
tkz.backend_tokenizer.decoder.prefix=tkz.backend_tokenizer.model.continuing_subword_prefix=""
|
25 |
+
tkz.save_pretrained(tgt)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:269d677fb2bbfbd0cac02012d8c421c6acf13b96c38f03846704f821d316651f
|
3 |
+
size 80634974
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[CLS]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[PAD]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": false,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 1000000000000000019884624838656,
|
51 |
+
"never_split": [
|
52 |
+
"[CLS]",
|
53 |
+
"[PAD]",
|
54 |
+
"[SEP]",
|
55 |
+
"[UNK]",
|
56 |
+
"[MASK]"
|
57 |
+
],
|
58 |
+
"pad_token": "[PAD]",
|
59 |
+
"sep_token": "[SEP]",
|
60 |
+
"strip_accents": false,
|
61 |
+
"tokenize_chinese_chars": true,
|
62 |
+
"tokenizer_class": "BertTokenizer",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|