File size: 4,240 Bytes
f66ed83 ee3d117 f66ed83 9027b16 ee3d117 f66ed83 30be10f 35bcaeb 9027b16 5ab19c1 9027b16 5850a83 ee3d117 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
---
language:
- en
license: apache-2.0
datasets:
- Open-Orca/OpenOrca
- teknium/openhermes
- cognitivecomputations/dolphin
- jondurbin/airoboros-3.1
- unalignment/toxic-dpo-v0.1
- unalignment/spicy-3.1
model-index:
- name: Hippolyta-7B-bf16
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 60.58
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kquant03/Hippolyta-7B-bf16
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 79.98
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kquant03/Hippolyta-7B-bf16
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 57.71
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kquant03/Hippolyta-7B-bf16
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 55.74
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kquant03/Hippolyta-7B-bf16
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 73.95
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kquant03/Hippolyta-7B-bf16
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 1.82
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kquant03/Hippolyta-7B-bf16
name: Open LLM Leaderboard
---

# The flower of Ares.
[GGUF files here](https://huggingface.co/Kquant03/Hippolyta-7B-GGUF)
Fine-tuned on [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)...[my team and I](https://huggingface.co/ConvexAI) reformatted many different datasets and included a small amount of private stuff to see how much we could improve mistral.
I spoke to it personally for about an hour, and I believe we need to work on our format for the private dataset a bit more, but other than that, it turned out great. I will be uploading it to open llm evaluations, today.
- Uses Mistral prompt template with chat-instruct.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Kquant03__Hippolyta-7B-bf16)
| Metric |Value|
|---------------------------------|----:|
|Avg. |54.96|
|AI2 Reasoning Challenge (25-Shot)|60.58|
|HellaSwag (10-Shot) |79.98|
|MMLU (5-Shot) |57.71|
|TruthfulQA (0-shot) |55.74|
|Winogrande (5-shot) |73.95|
|GSM8k (5-shot) | 1.82|
|