--- language: - en library_name: pytorch tags: - language-model - gpt2 - transformer - wikitext-103 model-index: - name: gpt2_wt103-40m_12-layer results: - task: type: language-modeling dataset: type: wikitext name: Wikitext-103 metrics: - type: perplexity value: 40.3 --- # Model description paper: [Characterizing Verbatim Short-Term Memory in Neural Language Models](https://doi.org/10.48550/arXiv.2210.13569) This is a gpt2-small-like decoder-only transformer model trained on a 40M token subset of the [wikitext-103 dataset](https://paperswithcode.com/dataset/wikitext-103). # Intended uses This checkpoint is intended for research purposes, for example those interested in studying the behavior of transformer language models trained on smaller datasets.