Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -5.52 +/- 1.28
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2cb68abe4ada4b5a5c6f62401acd792dd5238a85d78a62dd6e66750cac87f40c
|
3 |
+
size 108027
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5390ea83a0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f5390ea7540>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1684162131528130137,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVzwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjE8vaG9tZS9rZW50L2NvbmRhMy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxPL2hvbWUva2VudC9jb25kYTMvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA292GPgnA770wqqs+292GPgnA770wqqs+292GPgnA770wqqs+292GPgnA770wqqs+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2MmGv1bilr8CHt2/10/VP90nrb6+Ize+9p/Av1BZf78HidG/tUDUPx/Erj+v5789lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADb3YY+CcDvvTCqqz5VFNg8CeaRvMC4Oj3b3YY+CcDvvTCqqz5VFNg8CeaRvMC4Oj3b3YY+CcDvvTCqqz5VFNg8CeaRvMC4Oj3b3YY+CcDvvTCqqz5VFNg8CeaRvMC4Oj2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.26341137 -0.1170655 0.3352828 ]\n [ 0.26341137 -0.1170655 0.3352828 ]\n [ 0.26341137 -0.1170655 0.3352828 ]\n [ 0.26341137 -0.1170655 0.3352828 ]]",
|
38 |
+
"desired_goal": "[[-1.0530348 -1.1787822 -1.7274783 ]\n [ 1.666499 -0.33819476 -0.17884728]\n [-1.5048816 -0.99745655 -1.6369942 ]\n [ 1.6582247 1.3653601 0.09370362]]",
|
39 |
+
"observation": "[[ 0.26341137 -0.1170655 0.3352828 0.02637688 -0.01780988 0.04558635]\n [ 0.26341137 -0.1170655 0.3352828 0.02637688 -0.01780988 0.04558635]\n [ 0.26341137 -0.1170655 0.3352828 0.02637688 -0.01780988 0.04558635]\n [ 0.26341137 -0.1170655 0.3352828 0.02637688 -0.01780988 0.04558635]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARM23vUELrL2+sxQ+XbWmvZm2yT2gra89MXkFvt4cgryIqG4+RksBPovvBj5RBpg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.08974698 -0.08400584 0.14521691]\n [-0.08140061 0.09849281 0.08578038]\n [-0.13034512 -0.01588291 0.23306477]\n [ 0.12626371 0.13177316 0.2969232 ]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIV0EMdO0rCcCUhpRSlIwBbJRLMowBdJRHQJkfmCZnctZ1fZQoaAZoCWgPQwhrSUc5mC0LwJSGlFKUaBVLMmgWR0CZH1KNQ0oCdX2UKGgGaAloD0MIfshbrn5MB8CUhpRSlGgVSzJoFkdAmR8LxmTTv3V9lChoBmgJaA9DCK7YX3ZPbhjAlIaUUpRoFUsyaBZHQJkew+Y+jdp1fZQoaAZoCWgPQwibVgqBXAIHwJSGlFKUaBVLMmgWR0CZIKYqoZQ6dX2UKGgGaAloD0MIVI80uK2tB8CUhpRSlGgVSzJoFkdAmSBgc1fmcXV9lChoBmgJaA9DCGe5bHTOnxHAlIaUUpRoFUsyaBZHQJkgGc3EQ5F1fZQoaAZoCWgPQwiwjuOHSnMawJSGlFKUaBVLMmgWR0CZH9HzYmLMdX2UKGgGaAloD0MIsB2M2CeADsCUhpRSlGgVSzJoFkdAmSG+Hvc8DHV9lChoBmgJaA9DCJj5Dn7icBrAlIaUUpRoFUsyaBZHQJkheGrS3LF1fZQoaAZoCWgPQwiyne+nxmsMwJSGlFKUaBVLMmgWR0CZITGwA2hqdX2UKGgGaAloD0MIgEQTKGKBEsCUhpRSlGgVSzJoFkdAmSDpvYODrnV9lChoBmgJaA9DCNB7YwgAfhPAlIaUUpRoFUsyaBZHQJki1LeyiVV1fZQoaAZoCWgPQwh7uyU5YOcUwJSGlFKUaBVLMmgWR0CZIo8NhE0BdX2UKGgGaAloD0MIGM41zNBYG8CUhpRSlGgVSzJoFkdAmSJInndO7HV9lChoBmgJaA9DCLZHb7iPvBTAlIaUUpRoFUsyaBZHQJkiALb5/LF1fZQoaAZoCWgPQwhb7PZZZaYKwJSGlFKUaBVLMmgWR0CZI/hxYJVsdX2UKGgGaAloD0MIGePD7GUrGsCUhpRSlGgVSzJoFkdAmSOy9M9KVnV9lChoBmgJaA9DCPsioS3nQhDAlIaUUpRoFUsyaBZHQJkjbE/B3zN1fZQoaAZoCWgPQwjBkUCDTe0VwJSGlFKUaBVLMmgWR0CZIyRYA80UdX2UKGgGaAloD0MImwEuyJaFEsCUhpRSlGgVSzJoFkdAmSUWiYb833V9lChoBmgJaA9DCI2ar5KPPRLAlIaUUpRoFUsyaBZHQJkk0OLBKth1fZQoaAZoCWgPQwjAeXHiq70QwJSGlFKUaBVLMmgWR0CZJIpVS4vwdX2UKGgGaAloD0MIOV6B6EmJE8CUhpRSlGgVSzJoFkdAmSRCRW912nV9lChoBmgJaA9DCEPLun8sBAfAlIaUUpRoFUsyaBZHQJkmRLM9r451fZQoaAZoCWgPQwiuYYbGE7ESwJSGlFKUaBVLMmgWR0CZJf78Nx2jdX2UKGgGaAloD0MIhxkaTwTxDsCUhpRSlGgVSzJoFkdAmSW4ZqEeyXV9lChoBmgJaA9DCJ7Swfo/dxjAlIaUUpRoFUsyaBZHQJklcNOM2m51fZQoaAZoCWgPQwiMogc+BqMiwJSGlFKUaBVLMmgWR0CZJ4RsMy8BdX2UKGgGaAloD0MI/WmjOh2IDsCUhpRSlGgVSzJoFkdAmSc/xDst03V9lChoBmgJaA9DCFFOtKuQsh/AlIaUUpRoFUsyaBZHQJkm+TPjXFt1fZQoaAZoCWgPQwiqQ26GGyASwJSGlFKUaBVLMmgWR0CZJrEk0JnhdX2UKGgGaAloD0MILe3UXG6AGcCUhpRSlGgVSzJoFkdAmSiejdpItnV9lChoBmgJaA9DCMjPRq6b8gnAlIaUUpRoFUsyaBZHQJkoWOLiuMd1fZQoaAZoCWgPQwgHz4QmiSUPwJSGlFKUaBVLMmgWR0CZKBJBgNPQdX2UKGgGaAloD0MIGttrQe/NF8CUhpRSlGgVSzJoFkdAmSfKQV9F4XV9lChoBmgJaA9DCBhgH5260hTAlIaUUpRoFUsyaBZHQJkpw//vOQh1fZQoaAZoCWgPQwiCrRIsDhcYwJSGlFKUaBVLMmgWR0CZKX5XEIgOdX2UKGgGaAloD0MIMQkX8giuDMCUhpRSlGgVSzJoFkdAmSk3n6l+E3V9lChoBmgJaA9DCBAHCVG+cBvAlIaUUpRoFUsyaBZHQJko76j32251fZQoaAZoCWgPQwh3FOeoowMUwJSGlFKUaBVLMmgWR0CZKtjIJZ4fdX2UKGgGaAloD0MInPnVHCAoF8CUhpRSlGgVSzJoFkdAmSqTD8+A3HV9lChoBmgJaA9DCC+FB82uuxTAlIaUUpRoFUsyaBZHQJkqTEFW4mV1fZQoaAZoCWgPQwhPJJhqZm0XwJSGlFKUaBVLMmgWR0CZKgQ176YWdX2UKGgGaAloD0MIwHgGDf3zDMCUhpRSlGgVSzJoFkdAmSvxNqQA/HV9lChoBmgJaA9DCNk/TwMGASPAlIaUUpRoFUsyaBZHQJkrq5mRNh51fZQoaAZoCWgPQwgr/BnerGEMwJSGlFKUaBVLMmgWR0CZK2VJ+UhWdX2UKGgGaAloD0MI4KKTpdbrF8CUhpRSlGgVSzJoFkdAmSsdOqNp/XV9lChoBmgJaA9DCENVTKWfsA7AlIaUUpRoFUsyaBZHQJktDJiiItV1fZQoaAZoCWgPQwhDxqNUwlMZwJSGlFKUaBVLMmgWR0CZLMb1AZ88dX2UKGgGaAloD0MI5q26DtXUB8CUhpRSlGgVSzJoFkdAmSyAXAM2FXV9lChoBmgJaA9DCMcuUb01EAbAlIaUUpRoFUsyaBZHQJksOF+NLlF1fZQoaAZoCWgPQwgtCyb+KEoewJSGlFKUaBVLMmgWR0CZLilxOtW/dX2UKGgGaAloD0MIYYkHlE2ZE8CUhpRSlGgVSzJoFkdAmS3kKeCkGnV9lChoBmgJaA9DCB0EHa1qeRPAlIaUUpRoFUsyaBZHQJktnW9US7J1fZQoaAZoCWgPQwi+UMB2MIIKwJSGlFKUaBVLMmgWR0CZLVVxCIDYdX2UKGgGaAloD0MIjnbc8LvpCsCUhpRSlGgVSzJoFkdAmS9FvAGjbnV9lChoBmgJaA9DCBK9jGK5NRvAlIaUUpRoFUsyaBZHQJkvAAR02cd1fZQoaAZoCWgPQwgXK2owDcMLwJSGlFKUaBVLMmgWR0CZLrlPacqfdX2UKGgGaAloD0MIfZdSl4zTF8CUhpRSlGgVSzJoFkdAmS5xPTG5tnV9lChoBmgJaA9DCPooIy4A1S7AlIaUUpRoFUsyaBZHQJkwcVM23rl1fZQoaAZoCWgPQwjxn26gwPsKwJSGlFKUaBVLMmgWR0CZMCu0kWykdX2UKGgGaAloD0MI2xMktrtnDMCUhpRSlGgVSzJoFkdAmS/lAVwgknV9lChoBmgJaA9DCM2tEFZjKRXAlIaUUpRoFUsyaBZHQJkvnWGyon91fZQoaAZoCWgPQwiVumQcI+kUwJSGlFKUaBVLMmgWR0CZMaOmzjWDdX2UKGgGaAloD0MIL204LA1cDsCUhpRSlGgVSzJoFkdAmTFd6X0GvHV9lChoBmgJaA9DCHK/Q1Gg7wrAlIaUUpRoFUsyaBZHQJkxF20Re1N1fZQoaAZoCWgPQwhX7C+7J6cswJSGlFKUaBVLMmgWR0CZMM/VAiV0dX2UKGgGaAloD0MIY0Si0LIuGMCUhpRSlGgVSzJoFkdAmTK+EM9bHXV9lChoBmgJaA9DCEBtVKcD+QbAlIaUUpRoFUsyaBZHQJkyeFzuF6B1fZQoaAZoCWgPQwjSqpZ0lKMMwJSGlFKUaBVLMmgWR0CZMjG5tm+TdX2UKGgGaAloD0MINBKhEWz8DcCUhpRSlGgVSzJoFkdAmTHp1Ng0CXV9lChoBmgJaA9DCHXo9Lwbiw7AlIaUUpRoFUsyaBZHQJkz2bjLjgh1fZQoaAZoCWgPQwjGv8+4cCAcwJSGlFKUaBVLMmgWR0CZM5QGfPHDdX2UKGgGaAloD0MIGHyakxdZE8CUhpRSlGgVSzJoFkdAmTNNY4hllXV9lChoBmgJaA9DCJlLqrabQBXAlIaUUpRoFUsyaBZHQJkzBVU+9rZ1fZQoaAZoCWgPQwgmUS/4NOcEwJSGlFKUaBVLMmgWR0CZNPv5gw49dX2UKGgGaAloD0MIh1ClZg+0CsCUhpRSlGgVSzJoFkdAmTS2TC+De3V9lChoBmgJaA9DCB1bzxCOWQvAlIaUUpRoFUsyaBZHQJk0b4L1EmZ1fZQoaAZoCWgPQwhi3A2itUIZwJSGlFKUaBVLMmgWR0CZNCedCmdidX2UKGgGaAloD0MI65Cb4QYsGcCUhpRSlGgVSzJoFkdAmTYXvQWvbHV9lChoBmgJaA9DCEONQpJZvRfAlIaUUpRoFUsyaBZHQJk10h6jWTZ1fZQoaAZoCWgPQwgY7lwY6ZUSwJSGlFKUaBVLMmgWR0CZNYthd+ocdX2UKGgGaAloD0MIogvqW+aEHcCUhpRSlGgVSzJoFkdAmTVDgIhQnHV9lChoBmgJaA9DCJxu2SH+4Q3AlIaUUpRoFUsyaBZHQJk3Kki2Ujd1fZQoaAZoCWgPQwhxHHi13JkcwJSGlFKUaBVLMmgWR0CZNuSWZ7XydX2UKGgGaAloD0MI6l28H7cfCMCUhpRSlGgVSzJoFkdAmTad3wCr93V9lChoBmgJaA9DCDV+4ZUkTxjAlIaUUpRoFUsyaBZHQJk2Vct5D7Z1fZQoaAZoCWgPQwhosn+eBpwUwJSGlFKUaBVLMmgWR0CZOGRHf/FSdX2UKGgGaAloD0MIsvM2NjuCF8CUhpRSlGgVSzJoFkdAmTgelXRw63V9lChoBmgJaA9DCIJxcOmYYx/AlIaUUpRoFUsyaBZHQJk319QXQ+l1fZQoaAZoCWgPQwiRJ0nXTH4LwJSGlFKUaBVLMmgWR0CZN5B3zMA4dX2UKGgGaAloD0MICVIpdjSODcCUhpRSlGgVSzJoFkdAmTl9VFQVK3V9lChoBmgJaA9DCBgGLLmKlRLAlIaUUpRoFUsyaBZHQJk5N7F85S51fZQoaAZoCWgPQwgROBJosCkIwJSGlFKUaBVLMmgWR0CZOPDu0CzUdX2UKGgGaAloD0MIELOXbaedGcCUhpRSlGgVSzJoFkdAmTio6CDmKnV9lChoBmgJaA9DCNbHQ9/dagfAlIaUUpRoFUsyaBZHQJk6j2alUId1fZQoaAZoCWgPQwjxg/OpYxUNwJSGlFKUaBVLMmgWR0CZOknX/YJ3dX2UKGgGaAloD0MI/reSHRsxIsCUhpRSlGgVSzJoFkdAmToDHGS6lXV9lChoBmgJaA9DCG2MnfAStCLAlIaUUpRoFUsyaBZHQJk5uwwCbMJ1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c89c117cc052e4737c11d174d5e99a256b4506bfa1dc01bc2688ad38149d3d3c
|
3 |
+
size 44670
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1264448b88395f41aad406f91363756cf9eca045b50b6732f5d2ee46ee64efbd
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.0-71-generic-x86_64-with-glibc2.35 # 78-Ubuntu SMP Tue Apr 18 09:00:29 UTC 2023
|
2 |
+
- Python: 3.9.13
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 1.11.0+cu102
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.2
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5390ea83a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5390ea7540>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684162131528130137, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVzwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjE8vaG9tZS9rZW50L2NvbmRhMy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxPL2hvbWUva2VudC9jb25kYTMvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA292GPgnA770wqqs+292GPgnA770wqqs+292GPgnA770wqqs+292GPgnA770wqqs+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2MmGv1bilr8CHt2/10/VP90nrb6+Ize+9p/Av1BZf78HidG/tUDUPx/Erj+v5789lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADb3YY+CcDvvTCqqz5VFNg8CeaRvMC4Oj3b3YY+CcDvvTCqqz5VFNg8CeaRvMC4Oj3b3YY+CcDvvTCqqz5VFNg8CeaRvMC4Oj3b3YY+CcDvvTCqqz5VFNg8CeaRvMC4Oj2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.26341137 -0.1170655 0.3352828 ]\n [ 0.26341137 -0.1170655 0.3352828 ]\n [ 0.26341137 -0.1170655 0.3352828 ]\n [ 0.26341137 -0.1170655 0.3352828 ]]", "desired_goal": "[[-1.0530348 -1.1787822 -1.7274783 ]\n [ 1.666499 -0.33819476 -0.17884728]\n [-1.5048816 -0.99745655 -1.6369942 ]\n [ 1.6582247 1.3653601 0.09370362]]", "observation": "[[ 0.26341137 -0.1170655 0.3352828 0.02637688 -0.01780988 0.04558635]\n [ 0.26341137 -0.1170655 0.3352828 0.02637688 -0.01780988 0.04558635]\n [ 0.26341137 -0.1170655 0.3352828 0.02637688 -0.01780988 0.04558635]\n [ 0.26341137 -0.1170655 0.3352828 0.02637688 -0.01780988 0.04558635]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARM23vUELrL2+sxQ+XbWmvZm2yT2gra89MXkFvt4cgryIqG4+RksBPovvBj5RBpg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.08974698 -0.08400584 0.14521691]\n [-0.08140061 0.09849281 0.08578038]\n [-0.13034512 -0.01588291 0.23306477]\n [ 0.12626371 0.13177316 0.2969232 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIV0EMdO0rCcCUhpRSlIwBbJRLMowBdJRHQJkfmCZnctZ1fZQoaAZoCWgPQwhrSUc5mC0LwJSGlFKUaBVLMmgWR0CZH1KNQ0oCdX2UKGgGaAloD0MIfshbrn5MB8CUhpRSlGgVSzJoFkdAmR8LxmTTv3V9lChoBmgJaA9DCK7YX3ZPbhjAlIaUUpRoFUsyaBZHQJkew+Y+jdp1fZQoaAZoCWgPQwibVgqBXAIHwJSGlFKUaBVLMmgWR0CZIKYqoZQ6dX2UKGgGaAloD0MIVI80uK2tB8CUhpRSlGgVSzJoFkdAmSBgc1fmcXV9lChoBmgJaA9DCGe5bHTOnxHAlIaUUpRoFUsyaBZHQJkgGc3EQ5F1fZQoaAZoCWgPQwiwjuOHSnMawJSGlFKUaBVLMmgWR0CZH9HzYmLMdX2UKGgGaAloD0MIsB2M2CeADsCUhpRSlGgVSzJoFkdAmSG+Hvc8DHV9lChoBmgJaA9DCJj5Dn7icBrAlIaUUpRoFUsyaBZHQJkheGrS3LF1fZQoaAZoCWgPQwiyne+nxmsMwJSGlFKUaBVLMmgWR0CZITGwA2hqdX2UKGgGaAloD0MIgEQTKGKBEsCUhpRSlGgVSzJoFkdAmSDpvYODrnV9lChoBmgJaA9DCNB7YwgAfhPAlIaUUpRoFUsyaBZHQJki1LeyiVV1fZQoaAZoCWgPQwh7uyU5YOcUwJSGlFKUaBVLMmgWR0CZIo8NhE0BdX2UKGgGaAloD0MIGM41zNBYG8CUhpRSlGgVSzJoFkdAmSJInndO7HV9lChoBmgJaA9DCLZHb7iPvBTAlIaUUpRoFUsyaBZHQJkiALb5/LF1fZQoaAZoCWgPQwhb7PZZZaYKwJSGlFKUaBVLMmgWR0CZI/hxYJVsdX2UKGgGaAloD0MIGePD7GUrGsCUhpRSlGgVSzJoFkdAmSOy9M9KVnV9lChoBmgJaA9DCPsioS3nQhDAlIaUUpRoFUsyaBZHQJkjbE/B3zN1fZQoaAZoCWgPQwjBkUCDTe0VwJSGlFKUaBVLMmgWR0CZIyRYA80UdX2UKGgGaAloD0MImwEuyJaFEsCUhpRSlGgVSzJoFkdAmSUWiYb833V9lChoBmgJaA9DCI2ar5KPPRLAlIaUUpRoFUsyaBZHQJkk0OLBKth1fZQoaAZoCWgPQwjAeXHiq70QwJSGlFKUaBVLMmgWR0CZJIpVS4vwdX2UKGgGaAloD0MIOV6B6EmJE8CUhpRSlGgVSzJoFkdAmSRCRW912nV9lChoBmgJaA9DCEPLun8sBAfAlIaUUpRoFUsyaBZHQJkmRLM9r451fZQoaAZoCWgPQwiuYYbGE7ESwJSGlFKUaBVLMmgWR0CZJf78Nx2jdX2UKGgGaAloD0MIhxkaTwTxDsCUhpRSlGgVSzJoFkdAmSW4ZqEeyXV9lChoBmgJaA9DCJ7Swfo/dxjAlIaUUpRoFUsyaBZHQJklcNOM2m51fZQoaAZoCWgPQwiMogc+BqMiwJSGlFKUaBVLMmgWR0CZJ4RsMy8BdX2UKGgGaAloD0MI/WmjOh2IDsCUhpRSlGgVSzJoFkdAmSc/xDst03V9lChoBmgJaA9DCFFOtKuQsh/AlIaUUpRoFUsyaBZHQJkm+TPjXFt1fZQoaAZoCWgPQwiqQ26GGyASwJSGlFKUaBVLMmgWR0CZJrEk0JnhdX2UKGgGaAloD0MILe3UXG6AGcCUhpRSlGgVSzJoFkdAmSiejdpItnV9lChoBmgJaA9DCMjPRq6b8gnAlIaUUpRoFUsyaBZHQJkoWOLiuMd1fZQoaAZoCWgPQwgHz4QmiSUPwJSGlFKUaBVLMmgWR0CZKBJBgNPQdX2UKGgGaAloD0MIGttrQe/NF8CUhpRSlGgVSzJoFkdAmSfKQV9F4XV9lChoBmgJaA9DCBhgH5260hTAlIaUUpRoFUsyaBZHQJkpw//vOQh1fZQoaAZoCWgPQwiCrRIsDhcYwJSGlFKUaBVLMmgWR0CZKX5XEIgOdX2UKGgGaAloD0MIMQkX8giuDMCUhpRSlGgVSzJoFkdAmSk3n6l+E3V9lChoBmgJaA9DCBAHCVG+cBvAlIaUUpRoFUsyaBZHQJko76j32251fZQoaAZoCWgPQwh3FOeoowMUwJSGlFKUaBVLMmgWR0CZKtjIJZ4fdX2UKGgGaAloD0MInPnVHCAoF8CUhpRSlGgVSzJoFkdAmSqTD8+A3HV9lChoBmgJaA9DCC+FB82uuxTAlIaUUpRoFUsyaBZHQJkqTEFW4mV1fZQoaAZoCWgPQwhPJJhqZm0XwJSGlFKUaBVLMmgWR0CZKgQ176YWdX2UKGgGaAloD0MIwHgGDf3zDMCUhpRSlGgVSzJoFkdAmSvxNqQA/HV9lChoBmgJaA9DCNk/TwMGASPAlIaUUpRoFUsyaBZHQJkrq5mRNh51fZQoaAZoCWgPQwgr/BnerGEMwJSGlFKUaBVLMmgWR0CZK2VJ+UhWdX2UKGgGaAloD0MI4KKTpdbrF8CUhpRSlGgVSzJoFkdAmSsdOqNp/XV9lChoBmgJaA9DCENVTKWfsA7AlIaUUpRoFUsyaBZHQJktDJiiItV1fZQoaAZoCWgPQwhDxqNUwlMZwJSGlFKUaBVLMmgWR0CZLMb1AZ88dX2UKGgGaAloD0MI5q26DtXUB8CUhpRSlGgVSzJoFkdAmSyAXAM2FXV9lChoBmgJaA9DCMcuUb01EAbAlIaUUpRoFUsyaBZHQJksOF+NLlF1fZQoaAZoCWgPQwgtCyb+KEoewJSGlFKUaBVLMmgWR0CZLilxOtW/dX2UKGgGaAloD0MIYYkHlE2ZE8CUhpRSlGgVSzJoFkdAmS3kKeCkGnV9lChoBmgJaA9DCB0EHa1qeRPAlIaUUpRoFUsyaBZHQJktnW9US7J1fZQoaAZoCWgPQwi+UMB2MIIKwJSGlFKUaBVLMmgWR0CZLVVxCIDYdX2UKGgGaAloD0MIjnbc8LvpCsCUhpRSlGgVSzJoFkdAmS9FvAGjbnV9lChoBmgJaA9DCBK9jGK5NRvAlIaUUpRoFUsyaBZHQJkvAAR02cd1fZQoaAZoCWgPQwgXK2owDcMLwJSGlFKUaBVLMmgWR0CZLrlPacqfdX2UKGgGaAloD0MIfZdSl4zTF8CUhpRSlGgVSzJoFkdAmS5xPTG5tnV9lChoBmgJaA9DCPooIy4A1S7AlIaUUpRoFUsyaBZHQJkwcVM23rl1fZQoaAZoCWgPQwjxn26gwPsKwJSGlFKUaBVLMmgWR0CZMCu0kWykdX2UKGgGaAloD0MI2xMktrtnDMCUhpRSlGgVSzJoFkdAmS/lAVwgknV9lChoBmgJaA9DCM2tEFZjKRXAlIaUUpRoFUsyaBZHQJkvnWGyon91fZQoaAZoCWgPQwiVumQcI+kUwJSGlFKUaBVLMmgWR0CZMaOmzjWDdX2UKGgGaAloD0MIL204LA1cDsCUhpRSlGgVSzJoFkdAmTFd6X0GvHV9lChoBmgJaA9DCHK/Q1Gg7wrAlIaUUpRoFUsyaBZHQJkxF20Re1N1fZQoaAZoCWgPQwhX7C+7J6cswJSGlFKUaBVLMmgWR0CZMM/VAiV0dX2UKGgGaAloD0MIY0Si0LIuGMCUhpRSlGgVSzJoFkdAmTK+EM9bHXV9lChoBmgJaA9DCEBtVKcD+QbAlIaUUpRoFUsyaBZHQJkyeFzuF6B1fZQoaAZoCWgPQwjSqpZ0lKMMwJSGlFKUaBVLMmgWR0CZMjG5tm+TdX2UKGgGaAloD0MINBKhEWz8DcCUhpRSlGgVSzJoFkdAmTHp1Ng0CXV9lChoBmgJaA9DCHXo9Lwbiw7AlIaUUpRoFUsyaBZHQJkz2bjLjgh1fZQoaAZoCWgPQwjGv8+4cCAcwJSGlFKUaBVLMmgWR0CZM5QGfPHDdX2UKGgGaAloD0MIGHyakxdZE8CUhpRSlGgVSzJoFkdAmTNNY4hllXV9lChoBmgJaA9DCJlLqrabQBXAlIaUUpRoFUsyaBZHQJkzBVU+9rZ1fZQoaAZoCWgPQwgmUS/4NOcEwJSGlFKUaBVLMmgWR0CZNPv5gw49dX2UKGgGaAloD0MIh1ClZg+0CsCUhpRSlGgVSzJoFkdAmTS2TC+De3V9lChoBmgJaA9DCB1bzxCOWQvAlIaUUpRoFUsyaBZHQJk0b4L1EmZ1fZQoaAZoCWgPQwhi3A2itUIZwJSGlFKUaBVLMmgWR0CZNCedCmdidX2UKGgGaAloD0MI65Cb4QYsGcCUhpRSlGgVSzJoFkdAmTYXvQWvbHV9lChoBmgJaA9DCEONQpJZvRfAlIaUUpRoFUsyaBZHQJk10h6jWTZ1fZQoaAZoCWgPQwgY7lwY6ZUSwJSGlFKUaBVLMmgWR0CZNYthd+ocdX2UKGgGaAloD0MIogvqW+aEHcCUhpRSlGgVSzJoFkdAmTVDgIhQnHV9lChoBmgJaA9DCJxu2SH+4Q3AlIaUUpRoFUsyaBZHQJk3Kki2Ujd1fZQoaAZoCWgPQwhxHHi13JkcwJSGlFKUaBVLMmgWR0CZNuSWZ7XydX2UKGgGaAloD0MI6l28H7cfCMCUhpRSlGgVSzJoFkdAmTad3wCr93V9lChoBmgJaA9DCDV+4ZUkTxjAlIaUUpRoFUsyaBZHQJk2Vct5D7Z1fZQoaAZoCWgPQwhosn+eBpwUwJSGlFKUaBVLMmgWR0CZOGRHf/FSdX2UKGgGaAloD0MIsvM2NjuCF8CUhpRSlGgVSzJoFkdAmTgelXRw63V9lChoBmgJaA9DCIJxcOmYYx/AlIaUUpRoFUsyaBZHQJk319QXQ+l1fZQoaAZoCWgPQwiRJ0nXTH4LwJSGlFKUaBVLMmgWR0CZN5B3zMA4dX2UKGgGaAloD0MICVIpdjSODcCUhpRSlGgVSzJoFkdAmTl9VFQVK3V9lChoBmgJaA9DCBgGLLmKlRLAlIaUUpRoFUsyaBZHQJk5N7F85S51fZQoaAZoCWgPQwgROBJosCkIwJSGlFKUaBVLMmgWR0CZOPDu0CzUdX2UKGgGaAloD0MIELOXbaedGcCUhpRSlGgVSzJoFkdAmTio6CDmKnV9lChoBmgJaA9DCNbHQ9/dagfAlIaUUpRoFUsyaBZHQJk6j2alUId1fZQoaAZoCWgPQwjxg/OpYxUNwJSGlFKUaBVLMmgWR0CZOknX/YJ3dX2UKGgGaAloD0MI/reSHRsxIsCUhpRSlGgVSzJoFkdAmToDHGS6lXV9lChoBmgJaA9DCG2MnfAStCLAlIaUUpRoFUsyaBZHQJk5uwwCbMJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.0-71-generic-x86_64-with-glibc2.35 # 78-Ubuntu SMP Tue Apr 18 09:00:29 UTC 2023", "Python": "3.9.13", "Stable-Baselines3": "1.8.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (856 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -5.52142021805048, "std_reward": 1.2796801319220894, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-15T10:17:40.605458"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9350f2789fdbc37c82e4aef04cd972b850bb697c49b4bc018554103369af437e
|
3 |
+
size 2381
|