File size: 11,582 Bytes
b9661b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: apache-2.0
base_model: google-bert/bert-large-cased
tags:
- generated_from_trainer
model-index:
- name: google-bert-large-cased-finetuned-ner-vlsp2021-3090-15June-1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# google-bert-large-cased-finetuned-ner-vlsp2021-3090-15June-1

This model is a fine-tuned version of [google-bert/bert-large-cased](https://huggingface.co/google-bert/bert-large-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1555
- Atetime: {'precision': 0.7904411764705882, 'recall': 0.864321608040201, 'f1': 0.8257321171387422, 'number': 995}
- Ddress: {'precision': 0.8076923076923077, 'recall': 0.7241379310344828, 'f1': 0.7636363636363636, 'number': 29}
- Erson: {'precision': 0.8804057661505605, 'recall': 0.8738738738738738, 'f1': 0.8771276595744681, 'number': 1887}
- Ersontype: {'precision': 0.5577190542420027, 'recall': 0.5967261904761905, 'f1': 0.5765636232925951, 'number': 672}
- Honenumber: {'precision': 0.375, 'recall': 0.6666666666666666, 'f1': 0.4800000000000001, 'number': 9}
- Iscellaneous: {'precision': 0.4172661870503597, 'recall': 0.36477987421383645, 'f1': 0.38926174496644295, 'number': 159}
- Mail: {'precision': 0.9846153846153847, 'recall': 1.0, 'f1': 0.9922480620155039, 'number': 64}
- Ocation: {'precision': 0.6956237753102548, 'recall': 0.8236658932714617, 'f1': 0.7542492917847026, 'number': 1293}
- P: {'precision': 0.6363636363636364, 'recall': 0.6363636363636364, 'f1': 0.6363636363636364, 'number': 11}
- Rl: {'precision': 0.875, 'recall': 0.9333333333333333, 'f1': 0.9032258064516129, 'number': 15}
- Roduct: {'precision': 0.4963820549927641, 'recall': 0.5523349436392915, 'f1': 0.5228658536585367, 'number': 621}
- Overall Precision: 0.7268
- Overall Recall: 0.7798
- Overall F1: 0.7524
- Overall Accuracy: 0.9680

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Atetime                                                                                                  | Ddress                                                                                                   | Erson                                                                                                     | Ersontype                                                                                                 | Honenumber                                                                                               | Iscellaneous                                                                                               | Mail                                                                                     | Ocation                                                                                                   | P                                                                                                       | Rl                                                                                                      | Roduct                                                                                                     | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.1537        | 1.0   | 3263  | 0.1310          | {'precision': 0.7152777777777778, 'recall': 0.828140703517588, 'f1': 0.767582673497904, 'number': 995}   | {'precision': 0.40476190476190477, 'recall': 0.5862068965517241, 'f1': 0.4788732394366197, 'number': 29} | {'precision': 0.8104639684106614, 'recall': 0.8701642819289878, 'f1': 0.8392537694863277, 'number': 1887} | {'precision': 0.44173441734417346, 'recall': 0.4851190476190476, 'f1': 0.4624113475177305, 'number': 672} | {'precision': 0.11764705882352941, 'recall': 0.2222222222222222, 'f1': 0.15384615384615383, 'number': 9} | {'precision': 0.2848101265822785, 'recall': 0.2830188679245283, 'f1': 0.28391167192429023, 'number': 159}  | {'precision': 0.9411764705882353, 'recall': 1.0, 'f1': 0.9696969696969697, 'number': 64} | {'precision': 0.6284970722186076, 'recall': 0.7470997679814385, 'f1': 0.6826855123674911, 'number': 1293} | {'precision': 0.625, 'recall': 0.45454545454545453, 'f1': 0.5263157894736842, 'number': 11}             | {'precision': 0.5714285714285714, 'recall': 0.8, 'f1': 0.6666666666666666, 'number': 15}                | {'precision': 0.4410029498525074, 'recall': 0.48148148148148145, 'f1': 0.46035411855273284, 'number': 621} | 0.6520            | 0.7301         | 0.6889     | 0.9625           |
| 0.0882        | 2.0   | 6526  | 0.1432          | {'precision': 0.731433506044905, 'recall': 0.8512562814070351, 'f1': 0.786809103576405, 'number': 995}   | {'precision': 0.45, 'recall': 0.6206896551724138, 'f1': 0.5217391304347826, 'number': 29}                | {'precision': 0.876265466816648, 'recall': 0.825649178590355, 'f1': 0.8502046384720328, 'number': 1887}   | {'precision': 0.6190476190476191, 'recall': 0.4836309523809524, 'f1': 0.5430242272347536, 'number': 672}  | {'precision': 0.4, 'recall': 0.6666666666666666, 'f1': 0.5, 'number': 9}                                 | {'precision': 0.304635761589404, 'recall': 0.2893081761006289, 'f1': 0.29677419354838713, 'number': 159}   | {'precision': 0.9846153846153847, 'recall': 1.0, 'f1': 0.9922480620155039, 'number': 64} | {'precision': 0.610655737704918, 'recall': 0.8066511987625676, 'f1': 0.6951016327890702, 'number': 1293}  | {'precision': 0.875, 'recall': 0.6363636363636364, 'f1': 0.7368421052631579, 'number': 11}              | {'precision': 0.875, 'recall': 0.9333333333333333, 'f1': 0.9032258064516129, 'number': 15}              | {'precision': 0.5594989561586639, 'recall': 0.43156199677938806, 'f1': 0.48727272727272725, 'number': 621} | 0.7060            | 0.7291         | 0.7174     | 0.9651           |
| 0.0618        | 3.0   | 9789  | 0.1293          | {'precision': 0.7963709677419355, 'recall': 0.7939698492462312, 'f1': 0.7951685958731756, 'number': 995} | {'precision': 0.375, 'recall': 0.5172413793103449, 'f1': 0.4347826086956522, 'number': 29}               | {'precision': 0.8490759753593429, 'recall': 0.8765235824059353, 'f1': 0.8625814863102998, 'number': 1887} | {'precision': 0.4895287958115183, 'recall': 0.5565476190476191, 'f1': 0.5208913649025069, 'number': 672}  | {'precision': 0.4, 'recall': 0.6666666666666666, 'f1': 0.5, 'number': 9}                                 | {'precision': 0.36666666666666664, 'recall': 0.34591194968553457, 'f1': 0.3559870550161812, 'number': 159} | {'precision': 0.9846153846153847, 'recall': 1.0, 'f1': 0.9922480620155039, 'number': 64} | {'precision': 0.7187060478199718, 'recall': 0.7904098994586234, 'f1': 0.7528545119705341, 'number': 1293} | {'precision': 0.6666666666666666, 'recall': 0.5454545454545454, 'f1': 0.6, 'number': 11}                | {'precision': 0.875, 'recall': 0.9333333333333333, 'f1': 0.9032258064516129, 'number': 15}              | {'precision': 0.5252525252525253, 'recall': 0.5024154589371981, 'f1': 0.5135802469135803, 'number': 621}   | 0.7169            | 0.7493         | 0.7327     | 0.9658           |
| 0.0413        | 4.0   | 13052 | 0.1444          | {'precision': 0.7855839416058394, 'recall': 0.8653266331658291, 'f1': 0.8235294117647058, 'number': 995} | {'precision': 0.6428571428571429, 'recall': 0.6206896551724138, 'f1': 0.6315789473684211, 'number': 29}  | {'precision': 0.8776709401709402, 'recall': 0.8706942236354, 'f1': 0.874168661878159, 'number': 1887}     | {'precision': 0.5483405483405484, 'recall': 0.5654761904761905, 'f1': 0.5567765567765568, 'number': 672}  | {'precision': 0.2727272727272727, 'recall': 0.6666666666666666, 'f1': 0.3870967741935484, 'number': 9}   | {'precision': 0.4251968503937008, 'recall': 0.33962264150943394, 'f1': 0.37762237762237755, 'number': 159} | {'precision': 0.9411764705882353, 'recall': 1.0, 'f1': 0.9696969696969697, 'number': 64} | {'precision': 0.6886422976501305, 'recall': 0.8159319412219644, 'f1': 0.7469026548672566, 'number': 1293} | {'precision': 0.6363636363636364, 'recall': 0.6363636363636364, 'f1': 0.6363636363636364, 'number': 11} | {'precision': 0.8235294117647058, 'recall': 0.9333333333333333, 'f1': 0.8749999999999999, 'number': 15} | {'precision': 0.47619047619047616, 'recall': 0.5636070853462157, 'f1': 0.5162241887905604, 'number': 621}  | 0.7179            | 0.7736         | 0.7447     | 0.9668           |
| 0.0245        | 5.0   | 16315 | 0.1555          | {'precision': 0.7904411764705882, 'recall': 0.864321608040201, 'f1': 0.8257321171387422, 'number': 995}  | {'precision': 0.8076923076923077, 'recall': 0.7241379310344828, 'f1': 0.7636363636363636, 'number': 29}  | {'precision': 0.8804057661505605, 'recall': 0.8738738738738738, 'f1': 0.8771276595744681, 'number': 1887} | {'precision': 0.5577190542420027, 'recall': 0.5967261904761905, 'f1': 0.5765636232925951, 'number': 672}  | {'precision': 0.375, 'recall': 0.6666666666666666, 'f1': 0.4800000000000001, 'number': 9}                | {'precision': 0.4172661870503597, 'recall': 0.36477987421383645, 'f1': 0.38926174496644295, 'number': 159} | {'precision': 0.9846153846153847, 'recall': 1.0, 'f1': 0.9922480620155039, 'number': 64} | {'precision': 0.6956237753102548, 'recall': 0.8236658932714617, 'f1': 0.7542492917847026, 'number': 1293} | {'precision': 0.6363636363636364, 'recall': 0.6363636363636364, 'f1': 0.6363636363636364, 'number': 11} | {'precision': 0.875, 'recall': 0.9333333333333333, 'f1': 0.9032258064516129, 'number': 15}              | {'precision': 0.4963820549927641, 'recall': 0.5523349436392915, 'f1': 0.5228658536585367, 'number': 621}   | 0.7268            | 0.7798         | 0.7524     | 0.9680           |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1