--- library_name: transformers license: mit base_model: Kuongan/afro-xlmr-base-sun-noaug tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: CS221-afro-xlmr-base-sun-noaug-finetuned-sun-tapt results: [] --- # CS221-afro-xlmr-base-sun-noaug-finetuned-sun-tapt This model is a fine-tuned version of [Kuongan/afro-xlmr-base-sun-noaug](https://huggingface.co/Kuongan/afro-xlmr-base-sun-noaug) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1742 - F1: 0.5195 - Roc Auc: 0.7121 - Accuracy: 0.7537 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.1957 | 1.0 | 52 | 0.1748 | 0.3924 | 0.6586 | 0.7854 | | 0.2027 | 2.0 | 104 | 0.1789 | 0.3654 | 0.6387 | 0.7634 | | 0.1953 | 3.0 | 156 | 0.1768 | 0.4195 | 0.6657 | 0.7707 | | 0.1685 | 4.0 | 208 | 0.1858 | 0.4239 | 0.6645 | 0.7512 | | 0.164 | 5.0 | 260 | 0.1744 | 0.4035 | 0.6627 | 0.7659 | | 0.1553 | 6.0 | 312 | 0.1762 | 0.4651 | 0.6905 | 0.7561 | | 0.154 | 7.0 | 364 | 0.1725 | 0.5028 | 0.6999 | 0.7683 | | 0.1293 | 8.0 | 416 | 0.1768 | 0.4513 | 0.6843 | 0.7707 | | 0.1381 | 9.0 | 468 | 0.1742 | 0.5195 | 0.7121 | 0.7537 | | 0.1212 | 10.0 | 520 | 0.2013 | 0.3664 | 0.6299 | 0.7439 | | 0.0988 | 11.0 | 572 | 0.1723 | 0.4813 | 0.6954 | 0.7683 | | 0.1053 | 12.0 | 624 | 0.1810 | 0.4360 | 0.6706 | 0.7780 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0