File size: 3,163 Bytes
e13fe0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c97f07b
 
 
 
e13fe0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
library_name: transformers
license: mit
base_model: xlnet-large-cased
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: CS221-xlnet-large-cased-finetuned-augmentation
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# CS221-xlnet-large-cased-finetuned-augmentation

This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2505
- F1: 0.9280
- Roc Auc: 0.9437
- Accuracy: 0.8749

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Roc Auc | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
| 0.5536        | 1.0   | 360  | 0.5670          | 0.1475 | 0.5     | 0.1425   |
| 0.4339        | 2.0   | 720  | 0.4273          | 0.5310 | 0.6840  | 0.3391   |
| 0.3421        | 3.0   | 1080 | 0.3298          | 0.7397 | 0.8147  | 0.4927   |
| 0.2113        | 4.0   | 1440 | 0.2764          | 0.8083 | 0.8578  | 0.6338   |
| 0.1513        | 5.0   | 1800 | 0.2489          | 0.8476 | 0.8869  | 0.6810   |
| 0.1097        | 6.0   | 2160 | 0.2260          | 0.8777 | 0.9021  | 0.7665   |
| 0.0735        | 7.0   | 2520 | 0.2448          | 0.8996 | 0.9200  | 0.8026   |
| 0.0411        | 8.0   | 2880 | 0.2378          | 0.9129 | 0.9315  | 0.8214   |
| 0.0468        | 9.0   | 3240 | 0.2554          | 0.8990 | 0.9316  | 0.8235   |
| 0.0253        | 10.0  | 3600 | 0.2470          | 0.9084 | 0.9306  | 0.8464   |
| 0.021         | 11.0  | 3960 | 0.2412          | 0.9183 | 0.9388  | 0.8582   |
| 0.0125        | 12.0  | 4320 | 0.2440          | 0.9217 | 0.9383  | 0.8631   |
| 0.002         | 13.0  | 4680 | 0.2552          | 0.9232 | 0.9391  | 0.8673   |
| 0.0038        | 14.0  | 5040 | 0.2489          | 0.9237 | 0.9412  | 0.8666   |
| 0.0064        | 15.0  | 5400 | 0.2522          | 0.9234 | 0.9407  | 0.8659   |
| 0.0017        | 16.0  | 5760 | 0.2466          | 0.9254 | 0.9410  | 0.8728   |
| 0.0009        | 17.0  | 6120 | 0.2505          | 0.9280 | 0.9437  | 0.8749   |
| 0.0013        | 18.0  | 6480 | 0.2529          | 0.9272 | 0.9420  | 0.8749   |
| 0.002         | 19.0  | 6840 | 0.2530          | 0.9258 | 0.9412  | 0.8721   |
| 0.001         | 20.0  | 7200 | 0.2530          | 0.9258 | 0.9412  | 0.8721   |


### Framework versions

- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0