Model save
Browse files
README.md
CHANGED
@@ -19,10 +19,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
19 |
|
20 |
This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 0.
|
23 |
-
- F1: 0.
|
24 |
-
- Roc Auc: 0.
|
25 |
-
- Accuracy: 0.
|
26 |
|
27 |
## Model description
|
28 |
|
@@ -42,8 +42,8 @@ More information needed
|
|
42 |
|
43 |
The following hyperparameters were used during training:
|
44 |
- learning_rate: 2e-05
|
45 |
-
- train_batch_size:
|
46 |
-
- eval_batch_size:
|
47 |
- seed: 42
|
48 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
49 |
- lr_scheduler_type: cosine
|
@@ -54,10 +54,36 @@ The following hyperparameters were used during training:
|
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
|
63 |
### Framework versions
|
|
|
19 |
|
20 |
This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.7955
|
23 |
+
- F1: 0.7396
|
24 |
+
- Roc Auc: 0.8018
|
25 |
+
- Accuracy: 0.5192
|
26 |
|
27 |
## Model description
|
28 |
|
|
|
42 |
|
43 |
The following hyperparameters were used during training:
|
44 |
- learning_rate: 2e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 16
|
47 |
- seed: 42
|
48 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
49 |
- lr_scheduler_type: cosine
|
|
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
|
57 |
+
| 0.5878 | 1.0 | 176 | 0.5881 | 0.1451 | 0.5 | 0.1351 |
|
58 |
+
| 0.5732 | 2.0 | 352 | 0.5805 | 0.1451 | 0.5 | 0.1351 |
|
59 |
+
| 0.557 | 3.0 | 528 | 0.5823 | 0.1451 | 0.5 | 0.1351 |
|
60 |
+
| 0.5772 | 4.0 | 704 | 0.5767 | 0.1452 | 0.5003 | 0.1351 |
|
61 |
+
| 0.5465 | 5.0 | 880 | 0.5267 | 0.2391 | 0.5664 | 0.2048 |
|
62 |
+
| 0.4598 | 6.0 | 1056 | 0.4979 | 0.3903 | 0.6249 | 0.2774 |
|
63 |
+
| 0.4303 | 7.0 | 1232 | 0.4610 | 0.5396 | 0.6945 | 0.3556 |
|
64 |
+
| 0.3532 | 8.0 | 1408 | 0.4440 | 0.5847 | 0.7137 | 0.3841 |
|
65 |
+
| 0.2993 | 9.0 | 1584 | 0.4478 | 0.6193 | 0.7243 | 0.4168 |
|
66 |
+
| 0.2826 | 10.0 | 1760 | 0.4795 | 0.6142 | 0.7301 | 0.4196 |
|
67 |
+
| 0.2466 | 11.0 | 1936 | 0.4835 | 0.6709 | 0.7516 | 0.4481 |
|
68 |
+
| 0.1609 | 12.0 | 2112 | 0.4983 | 0.6965 | 0.7764 | 0.4637 |
|
69 |
+
| 0.1089 | 13.0 | 2288 | 0.5277 | 0.7061 | 0.7775 | 0.4666 |
|
70 |
+
| 0.0849 | 14.0 | 2464 | 0.5735 | 0.7163 | 0.7840 | 0.4609 |
|
71 |
+
| 0.0884 | 15.0 | 2640 | 0.6126 | 0.7061 | 0.7699 | 0.4822 |
|
72 |
+
| 0.04 | 16.0 | 2816 | 0.6565 | 0.7173 | 0.7884 | 0.4908 |
|
73 |
+
| 0.063 | 17.0 | 2992 | 0.6826 | 0.7215 | 0.7863 | 0.4979 |
|
74 |
+
| 0.0378 | 18.0 | 3168 | 0.6910 | 0.7319 | 0.7974 | 0.5121 |
|
75 |
+
| 0.0263 | 19.0 | 3344 | 0.7434 | 0.7230 | 0.7901 | 0.4936 |
|
76 |
+
| 0.0229 | 20.0 | 3520 | 0.7325 | 0.7376 | 0.8036 | 0.5050 |
|
77 |
+
| 0.0133 | 21.0 | 3696 | 0.7438 | 0.7364 | 0.8012 | 0.5092 |
|
78 |
+
| 0.0065 | 22.0 | 3872 | 0.7647 | 0.7334 | 0.8001 | 0.5135 |
|
79 |
+
| 0.0056 | 23.0 | 4048 | 0.7734 | 0.7374 | 0.8018 | 0.5164 |
|
80 |
+
| 0.0032 | 24.0 | 4224 | 0.7828 | 0.7382 | 0.8014 | 0.5206 |
|
81 |
+
| 0.0064 | 25.0 | 4400 | 0.7855 | 0.7352 | 0.7987 | 0.5149 |
|
82 |
+
| 0.005 | 26.0 | 4576 | 0.7907 | 0.7347 | 0.7967 | 0.5149 |
|
83 |
+
| 0.0097 | 27.0 | 4752 | 0.7985 | 0.7362 | 0.7996 | 0.5149 |
|
84 |
+
| 0.0032 | 28.0 | 4928 | 0.7953 | 0.7385 | 0.8011 | 0.5192 |
|
85 |
+
| 0.0027 | 29.0 | 5104 | 0.7954 | 0.7378 | 0.8005 | 0.5178 |
|
86 |
+
| 0.0027 | 30.0 | 5280 | 0.7955 | 0.7396 | 0.8018 | 0.5192 |
|
87 |
|
88 |
|
89 |
### Framework versions
|