Kuongan commited on
Commit
fba9257
·
verified ·
1 Parent(s): ed419eb

Model save

Browse files
Files changed (1) hide show
  1. README.md +36 -10
README.md CHANGED
@@ -19,10 +19,10 @@ should probably proofread and complete it, then remove this comment. -->
19
 
20
  This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 0.5708
23
- - F1: 0.1476
24
- - Roc Auc: 0.4998
25
- - Accuracy: 0.1465
26
 
27
  ## Model description
28
 
@@ -42,8 +42,8 @@ More information needed
42
 
43
  The following hyperparameters were used during training:
44
  - learning_rate: 2e-05
45
- - train_batch_size: 32
46
- - eval_batch_size: 32
47
  - seed: 42
48
  - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
49
  - lr_scheduler_type: cosine
@@ -54,10 +54,36 @@ The following hyperparameters were used during training:
54
 
55
  | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
56
  |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
57
- | 0.5836 | 1.0 | 88 | 0.5708 | 0.1476 | 0.4998 | 0.1465 |
58
- | 0.5786 | 2.0 | 176 | 0.5738 | 0.1476 | 0.5 | 0.1479 |
59
- | 0.5752 | 3.0 | 264 | 0.5617 | 0.1476 | 0.5 | 0.1479 |
60
- | 0.5701 | 4.0 | 352 | 0.5603 | 0.1476 | 0.5 | 0.1479 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
 
63
  ### Framework versions
 
19
 
20
  This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.7955
23
+ - F1: 0.7396
24
+ - Roc Auc: 0.8018
25
+ - Accuracy: 0.5192
26
 
27
  ## Model description
28
 
 
42
 
43
  The following hyperparameters were used during training:
44
  - learning_rate: 2e-05
45
+ - train_batch_size: 16
46
+ - eval_batch_size: 16
47
  - seed: 42
48
  - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
49
  - lr_scheduler_type: cosine
 
54
 
55
  | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
56
  |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
57
+ | 0.5878 | 1.0 | 176 | 0.5881 | 0.1451 | 0.5 | 0.1351 |
58
+ | 0.5732 | 2.0 | 352 | 0.5805 | 0.1451 | 0.5 | 0.1351 |
59
+ | 0.557 | 3.0 | 528 | 0.5823 | 0.1451 | 0.5 | 0.1351 |
60
+ | 0.5772 | 4.0 | 704 | 0.5767 | 0.1452 | 0.5003 | 0.1351 |
61
+ | 0.5465 | 5.0 | 880 | 0.5267 | 0.2391 | 0.5664 | 0.2048 |
62
+ | 0.4598 | 6.0 | 1056 | 0.4979 | 0.3903 | 0.6249 | 0.2774 |
63
+ | 0.4303 | 7.0 | 1232 | 0.4610 | 0.5396 | 0.6945 | 0.3556 |
64
+ | 0.3532 | 8.0 | 1408 | 0.4440 | 0.5847 | 0.7137 | 0.3841 |
65
+ | 0.2993 | 9.0 | 1584 | 0.4478 | 0.6193 | 0.7243 | 0.4168 |
66
+ | 0.2826 | 10.0 | 1760 | 0.4795 | 0.6142 | 0.7301 | 0.4196 |
67
+ | 0.2466 | 11.0 | 1936 | 0.4835 | 0.6709 | 0.7516 | 0.4481 |
68
+ | 0.1609 | 12.0 | 2112 | 0.4983 | 0.6965 | 0.7764 | 0.4637 |
69
+ | 0.1089 | 13.0 | 2288 | 0.5277 | 0.7061 | 0.7775 | 0.4666 |
70
+ | 0.0849 | 14.0 | 2464 | 0.5735 | 0.7163 | 0.7840 | 0.4609 |
71
+ | 0.0884 | 15.0 | 2640 | 0.6126 | 0.7061 | 0.7699 | 0.4822 |
72
+ | 0.04 | 16.0 | 2816 | 0.6565 | 0.7173 | 0.7884 | 0.4908 |
73
+ | 0.063 | 17.0 | 2992 | 0.6826 | 0.7215 | 0.7863 | 0.4979 |
74
+ | 0.0378 | 18.0 | 3168 | 0.6910 | 0.7319 | 0.7974 | 0.5121 |
75
+ | 0.0263 | 19.0 | 3344 | 0.7434 | 0.7230 | 0.7901 | 0.4936 |
76
+ | 0.0229 | 20.0 | 3520 | 0.7325 | 0.7376 | 0.8036 | 0.5050 |
77
+ | 0.0133 | 21.0 | 3696 | 0.7438 | 0.7364 | 0.8012 | 0.5092 |
78
+ | 0.0065 | 22.0 | 3872 | 0.7647 | 0.7334 | 0.8001 | 0.5135 |
79
+ | 0.0056 | 23.0 | 4048 | 0.7734 | 0.7374 | 0.8018 | 0.5164 |
80
+ | 0.0032 | 24.0 | 4224 | 0.7828 | 0.7382 | 0.8014 | 0.5206 |
81
+ | 0.0064 | 25.0 | 4400 | 0.7855 | 0.7352 | 0.7987 | 0.5149 |
82
+ | 0.005 | 26.0 | 4576 | 0.7907 | 0.7347 | 0.7967 | 0.5149 |
83
+ | 0.0097 | 27.0 | 4752 | 0.7985 | 0.7362 | 0.7996 | 0.5149 |
84
+ | 0.0032 | 28.0 | 4928 | 0.7953 | 0.7385 | 0.8011 | 0.5192 |
85
+ | 0.0027 | 29.0 | 5104 | 0.7954 | 0.7378 | 0.8005 | 0.5178 |
86
+ | 0.0027 | 30.0 | 5280 | 0.7955 | 0.7396 | 0.8018 | 0.5192 |
87
 
88
 
89
  ### Framework versions