File size: 2,189 Bytes
97e1bf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
library_name: transformers
license: mit
base_model: xlnet-large-cased
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: CS221-xlnet-large-cased-finetuned-semeval-aug
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# CS221-xlnet-large-cased-finetuned-semeval-aug
This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3323
- F1: 0.7655
- Roc Auc: 0.8218
- Accuracy: 0.5483
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
| 0.5847 | 1.0 | 277 | 0.5747 | 0.1535 | 0.5011 | 0.1409 |
| 0.5058 | 2.0 | 554 | 0.4907 | 0.3674 | 0.5986 | 0.2367 |
| 0.3991 | 3.0 | 831 | 0.4118 | 0.5551 | 0.6989 | 0.3921 |
| 0.3316 | 4.0 | 1108 | 0.3466 | 0.7102 | 0.7920 | 0.4770 |
| 0.2593 | 5.0 | 1385 | 0.3323 | 0.7655 | 0.8218 | 0.5483 |
| 0.1562 | 6.0 | 1662 | 0.3410 | 0.7838 | 0.8322 | 0.5962 |
| 0.1033 | 7.0 | 1939 | 0.3470 | 0.8023 | 0.8499 | 0.6134 |
| 0.0641 | 8.0 | 2216 | 0.3608 | 0.8102 | 0.8583 | 0.6314 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
|