Model save
Browse files- README.md +79 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: xlnet-large-cased
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: CS221-xlnet-large-cased-finetuned
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# CS221-xlnet-large-cased-finetuned
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.7215
|
23 |
+
- F1: 0.7480
|
24 |
+
- Roc Auc: 0.8032
|
25 |
+
- Accuracy: 0.4675
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 2e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 16
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
49 |
+
- lr_scheduler_type: cosine
|
50 |
+
- lr_scheduler_warmup_steps: 100
|
51 |
+
- num_epochs: 20
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
|
57 |
+
| 0.5487 | 1.0 | 139 | 0.5874 | 0.1435 | 0.5 | 0.1300 |
|
58 |
+
| 0.459 | 2.0 | 278 | 0.4370 | 0.5135 | 0.6713 | 0.3430 |
|
59 |
+
| 0.392 | 3.0 | 417 | 0.3982 | 0.6568 | 0.7439 | 0.4116 |
|
60 |
+
| 0.291 | 4.0 | 556 | 0.3839 | 0.7249 | 0.7924 | 0.4747 |
|
61 |
+
| 0.2056 | 5.0 | 695 | 0.4239 | 0.7129 | 0.7791 | 0.4422 |
|
62 |
+
| 0.1551 | 6.0 | 834 | 0.4474 | 0.7275 | 0.7883 | 0.4621 |
|
63 |
+
| 0.0951 | 7.0 | 973 | 0.5284 | 0.7206 | 0.7797 | 0.4477 |
|
64 |
+
| 0.0918 | 8.0 | 1112 | 0.5521 | 0.7395 | 0.7985 | 0.4458 |
|
65 |
+
| 0.0494 | 9.0 | 1251 | 0.5826 | 0.7458 | 0.8163 | 0.4513 |
|
66 |
+
| 0.0284 | 10.0 | 1390 | 0.6400 | 0.7337 | 0.7942 | 0.4440 |
|
67 |
+
| 0.0188 | 11.0 | 1529 | 0.6637 | 0.7310 | 0.7913 | 0.4675 |
|
68 |
+
| 0.0167 | 12.0 | 1668 | 0.6604 | 0.7550 | 0.8111 | 0.4675 |
|
69 |
+
| 0.0118 | 13.0 | 1807 | 0.7297 | 0.7341 | 0.7905 | 0.4531 |
|
70 |
+
| 0.0054 | 14.0 | 1946 | 0.7046 | 0.7542 | 0.8086 | 0.4711 |
|
71 |
+
| 0.0043 | 15.0 | 2085 | 0.7215 | 0.7480 | 0.8032 | 0.4675 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.47.0
|
77 |
+
- Pytorch 2.5.1+cu121
|
78 |
+
- Datasets 3.2.0
|
79 |
+
- Tokenizers 0.21.0
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1445339812
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:433c2d9496dc69d4c77742e5d0d5346c27cf6146437eb200ab2f970ba925ebe5
|
3 |
size 1445339812
|