--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: xlm-roberta-base-ptbr-finetuned results: [] --- # xlm-roberta-base-ptbr-finetuned This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3305 - F1: 0.2957 - Roc Auc: 0.6147 - Accuracy: 0.48 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.3954 | 1.0 | 109 | 0.3836 | 0.0 | 0.5 | 0.23 | | 0.3868 | 2.0 | 218 | 0.3428 | 0.1905 | 0.5658 | 0.415 | | 0.3374 | 3.0 | 327 | 0.3169 | 0.2236 | 0.5866 | 0.48 | | 0.2931 | 4.0 | 436 | 0.3217 | 0.2091 | 0.5789 | 0.425 | | 0.2601 | 5.0 | 545 | 0.3166 | 0.2752 | 0.6008 | 0.485 | | 0.2381 | 6.0 | 654 | 0.3305 | 0.2957 | 0.6147 | 0.48 | | 0.1987 | 7.0 | 763 | 0.3561 | 0.2761 | 0.6045 | 0.455 | | 0.1863 | 8.0 | 872 | 0.3538 | 0.2905 | 0.6121 | 0.465 | | 0.1335 | 9.0 | 981 | 0.3741 | 0.2710 | 0.6029 | 0.445 | | 0.1343 | 10.0 | 1090 | 0.3873 | 0.2850 | 0.6096 | 0.46 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0