|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List, Union, Optional |
|
|
|
from transformers.feature_extraction_utils import BatchFeature |
|
from transformers.image_utils import ImageInput |
|
from transformers.video_utils import VideoInput |
|
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, VideosKwargs |
|
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput |
|
from .image_processing_keye_vl_1_5 import KeyeVL1_5ImageProcessor |
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
from itertools import chain |
|
|
|
class KeyeVL1_5VideosProcessorKwargs(VideosKwargs, total=False): |
|
fps: Optional[Union[List[float], float]] |
|
|
|
width: Optional[Union[List[int], int]] |
|
|
|
height: Optional[Union[List[int], int]] |
|
|
|
fast_width: Optional[Union[List[int], int]] |
|
|
|
fast_height: Optional[Union[List[int], int]] |
|
|
|
timestamps: Optional[Union[List[torch.Tensor], torch.Tensor]] |
|
|
|
frame_types: Optional[Union[List[torch.Tensor], torch.Tensor]] |
|
|
|
|
|
class KeyeVL1_5ProcessorKwargs(ProcessingKwargs, total=False): |
|
videos_kwargs: KeyeVL1_5VideosProcessorKwargs |
|
_defaults = { |
|
"text_kwargs": { |
|
"padding": False, |
|
}, |
|
"videos_kwargs": {"fps": 2.0}, |
|
} |
|
|
|
def select_slow_fast_frames(frames: torch.Tensor, frame_types: torch.Tensor): |
|
""" |
|
Selects frames from a tensor based on a mask list. |
|
|
|
Args: |
|
frames (torch.Tensor): A tensor of shape (nframes, c, h, w). |
|
frame_types (torch.Tensor): A int tensor of shape (nframes,) |
|
|
|
Returns: |
|
tuple[torch.Tensor, torch.Tensor]: A tuple containing two tensors: |
|
- slow_frames: Frames which the type is 0. |
|
- fast_frames: Frames where the type is 1. |
|
""" |
|
nframes, _, _, _ = frames.shape |
|
if frame_types.shape[-1] != nframes: |
|
raise ValueError("Length of mask must be equal to the number of frames.") |
|
|
|
mask = (frame_types == 0) |
|
|
|
slow_frames = frames[mask] |
|
fast_frames = frames[~mask] |
|
|
|
return slow_frames, fast_frames |
|
|
|
def split_thw(tensor): |
|
"""Split grid_thw in t dimension, the result tensor should like [[1, h, w],...]""" |
|
repeats = tensor[:, 0] |
|
new_thw = torch.cat([ |
|
torch.ones(tensor.shape[0], 1, dtype=tensor.dtype, |
|
device=tensor.device), |
|
tensor[:, 1:] |
|
], dim=1) |
|
return torch.repeat_interleave(new_thw, repeats, dim=0) |
|
|
|
def merge_hws(hws): |
|
""" |
|
优化版本:使用更高效的方法合并张量 |
|
""" |
|
merged = [] |
|
last_hw = [-1, -1] |
|
|
|
for hw in hws: |
|
|
|
if hw[1:] == last_hw: |
|
merged[-1][0] += 1 |
|
else: |
|
merged.append(hw) |
|
last_hw = hw[1:] |
|
|
|
return torch.tensor(merged) |
|
|
|
class KeyeVL1_5Processor(ProcessorMixin): |
|
r""" |
|
[`KeyeVL1_5Processor`] offers all the functionalities of [`KeyeVL1_5ImageProcessor`] and [`Qwen2TokenizerFast`]. See the |
|
[`~KeyeVL1_5Processor.__call__`] and [`~KeyeVL1_5Processor.decode`] for more information. |
|
Args: |
|
image_processor ([`KeyeVL1_5ImageProcessor`], *optional*): |
|
The image processor is a required input. |
|
tokenizer ([`Qwen2TokenizerFast`], *optional*): |
|
The tokenizer is a required input. |
|
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages |
|
in a chat into a tokenizable string. |
|
""" |
|
|
|
attributes = ["image_processor", "tokenizer"] |
|
valid_kwargs = [ |
|
"chat_template","image_std", "min_pixels", "image_mean", "merge_size", "image_processor_type", |
|
"temporal_patch_size", "patch_size", "max_pixels" |
|
] |
|
|
|
image_processor_class = "AutoImageProcessor" |
|
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast") |
|
|
|
def __init__(self, image_processor=None, tokenizer=None, chat_template=None, **kwargs): |
|
self.image_token = "<|image_pad|>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token |
|
self.video_token = "<|video_pad|>" if not hasattr(tokenizer, "video_token") else tokenizer.video_token |
|
self.frame_token = "<|frame|>" if not hasattr(tokenizer, "frame_token") else tokenizer.frame_token |
|
self.fast_video_token = "<|fast_video_pad|>" if not hasattr(tokenizer, "fast_video_token") else tokenizer.fast_video_token |
|
self.fast_start = "<|fast_start|>" if not hasattr(tokenizer, "fast_start") else tokenizer.fast_start |
|
self.fast_end = "<|fast_end|>" if not hasattr(tokenizer, "fast_end") else tokenizer.fast_end |
|
super().__init__(image_processor, tokenizer, chat_template=chat_template) |
|
|
|
self.slowfast = True |
|
|
|
def __call__( |
|
self, |
|
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, |
|
images: ImageInput = None, |
|
videos: VideoInput = None, |
|
**kwargs: Unpack[KeyeVL1_5ProcessorKwargs], |
|
) -> BatchFeature: |
|
""" |
|
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` |
|
and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode |
|
the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to |
|
KeyeVL1_5ImageProcessor's [`~KeyeVL1_5ImageProcessor.__call__`] if `vision_infos` is not `None`. |
|
|
|
Args: |
|
text (`str`, `List[str]`, `List[List[str]]`): |
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings |
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set |
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). |
|
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): |
|
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch |
|
tensor. Both channels-first and channels-last formats are supported. |
|
videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`): |
|
The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch |
|
tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported. |
|
return_tensors (`str` or [`~utils.TensorType`], *optional*): |
|
If set, will return tensors of a particular framework. Acceptable values are: |
|
- `'tf'`: Return TensorFlow `tf.constant` objects. |
|
- `'pt'`: Return PyTorch `torch.Tensor` objects. |
|
- `'np'`: Return NumPy `np.ndarray` objects. |
|
- `'jax'`: Return JAX `jnp.ndarray` objects. |
|
|
|
Returns: |
|
[`BatchFeature`]: A [`BatchFeature`] with the following fields: |
|
|
|
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. |
|
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when |
|
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not |
|
`None`). |
|
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. |
|
- **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`. |
|
- **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`. |
|
- **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`. |
|
- **second_per_grid_ts** -- List of video seconds per time grid. Returned when `videos` is not `None`. |
|
""" |
|
output_kwargs = self._merge_kwargs( |
|
KeyeVL1_5ProcessorKwargs, |
|
tokenizer_init_kwargs=self.tokenizer.init_kwargs, |
|
**kwargs, |
|
) |
|
|
|
if images is not None: |
|
|
|
image_inputs = self.image_processor(images=images, return_tensors="pt") |
|
image_inputs['pixel_values'] = image_inputs['pixel_values'] |
|
image_grid_thw = image_inputs["image_grid_thw"] |
|
else: |
|
image_inputs = {} |
|
image_grid_thw = None |
|
|
|
num_frames = [] |
|
if videos is not None: |
|
batch_slow_frames = [] |
|
batch_fast_frames = [] |
|
|
|
videos_kwargs = output_kwargs["videos_kwargs"] |
|
num_videos = len(videos) |
|
batch_frame_types = videos_kwargs.get("frame_types", [None] * num_videos) |
|
batch_timestamps = videos_kwargs.get("timestamps", [None] * num_videos) |
|
batch_width = videos_kwargs.get("width", [None] * num_videos) |
|
batch_height = videos_kwargs.get("height", [None] * num_videos) |
|
batch_fast_width = videos_kwargs.get("fast_width", [None] * num_videos) |
|
batch_fast_height = videos_kwargs.get("fast_height", [None] * num_videos) |
|
|
|
for index, frames in enumerate(videos): |
|
if isinstance(frames, np.ndarray): |
|
frames = torch.from_numpy(frames) |
|
nframes = frames.shape[0] |
|
num_frames.append(nframes) |
|
assert nframes > 0, "No frames in video" |
|
if batch_frame_types[index] is None: |
|
|
|
batch_frame_types[index] = torch.zeros((nframes, ), dtype=torch.long) |
|
frame_types = batch_frame_types[index] |
|
slow_frames, fast_frames = select_slow_fast_frames(frames, frame_types) |
|
has_fast_frames = fast_frames.shape[0] > 0 |
|
|
|
resized_width = batch_width[index] |
|
resized_height = batch_height[index] |
|
if resized_width is not None and resized_height is not None: |
|
slow_frames = nn.functional.interpolate( |
|
slow_frames, |
|
[resized_height, resized_width], |
|
mode="bilinear", |
|
antialias=True, |
|
).float() |
|
do_resize = False |
|
else: |
|
slow_frames = slow_frames.float() |
|
do_resize = True |
|
|
|
|
|
slow_video_inputs = self.image_processor( |
|
images=None, videos=[slow_frames], **output_kwargs["images_kwargs"], do_resize=do_resize) |
|
slow_video_grid_thw = slow_video_inputs["video_grid_thw"] |
|
batch_slow_frames.append(slow_video_inputs) |
|
|
|
|
|
|
|
|
|
if has_fast_frames: |
|
|
|
fast_resized_width = batch_fast_width[index] |
|
fast_resized_height = batch_fast_height[index] |
|
if fast_resized_width is not None and fast_resized_height is not None: |
|
fast_frames = nn.functional.interpolate( |
|
fast_frames, |
|
[fast_resized_height, fast_resized_width], |
|
mode="bilinear", |
|
antialias=True, |
|
).float() |
|
do_fast_resize = False |
|
else: |
|
fast_frames = fast_frames.float() |
|
do_fast_resize = True |
|
|
|
|
|
fast_video_inputs = self.image_processor( |
|
images=None, videos=[fast_frames], **output_kwargs["images_kwargs"], do_resize=do_fast_resize) |
|
fast_video_grid_thw = fast_video_inputs["video_grid_thw"] |
|
batch_fast_frames.append(fast_video_inputs) |
|
|
|
|
|
|
|
|
|
assert len(batch_slow_frames) > 0, "Slow frames should not be empty." |
|
slow_pixel_values_videos_list = [ |
|
video["pixel_values_videos"] for video in batch_slow_frames if video is not None] |
|
slow_video_grid_thw_list = [ |
|
video["video_grid_thw"] for video in batch_slow_frames if video is not None] |
|
|
|
slow_pixel_values_videos = torch.concat(slow_pixel_values_videos_list, dim=0) |
|
slow_video_grid_thw = torch.concat(slow_video_grid_thw_list, dim=0) |
|
|
|
if has_fast_frames: |
|
fast_pixel_values_videos_list = [ |
|
video["pixel_values_videos"] for video in batch_fast_frames \ |
|
if video is not None] |
|
fast_video_grid_thw_list = [ |
|
video["video_grid_thw"] for video in batch_fast_frames \ |
|
if video is not None] |
|
|
|
fast_pixel_values_videos = \ |
|
torch.concat(fast_pixel_values_videos_list, dim=0) |
|
fast_video_grid_thw = \ |
|
torch.concat(fast_video_grid_thw_list, dim=0) |
|
else: |
|
fast_video_grid_thw = None |
|
else: |
|
slow_video_grid_thw = None |
|
fast_video_grid_thw = None |
|
|
|
if not isinstance(text, list): |
|
text = [text] |
|
if image_grid_thw is not None: |
|
index = 0 |
|
for i in range(len(text)): |
|
while self.image_token in text[i]: |
|
image_place_holder_tempale = "<|placeholder|>" * ( |
|
image_grid_thw[index].prod() // self.image_processor.merge_size ** 2) |
|
text[i] = text[i].replace( |
|
self.image_token, |
|
image_place_holder_tempale, |
|
1, |
|
) |
|
index += 1 |
|
text[i] = text[i].replace("<|placeholder|>", self.image_token) |
|
|
|
pixel_values_videos = [] |
|
video_grid_thw = [] |
|
videos_inputs = {} |
|
if slow_video_grid_thw is not None: |
|
slow_video_grid_thw = split_thw(slow_video_grid_thw) |
|
if fast_video_grid_thw is not None: |
|
fast_video_grid_thw = split_thw(fast_video_grid_thw) |
|
index = 0 |
|
slow_index = 0 |
|
fast_index = 0 |
|
slow_pixels_index = 0 |
|
fast_pixels_index = 0 |
|
for i in range(len(text)): |
|
while self.video_token in text[i]: |
|
video_place_holder_tempale = "" |
|
|
|
for j in range(batch_frame_types[index].shape[-1]): |
|
if batch_timestamps[index] is not None: |
|
video_place_holder_tempale += self.frame_token + format(batch_timestamps[index][j], ".1f") |
|
else: |
|
video_place_holder_tempale += self.frame_token |
|
|
|
|
|
if batch_frame_types[index][j] == 0: |
|
num_patches = int(slow_video_grid_thw[slow_index].prod()) |
|
video_place_holder_tempale += "<|placeholder|>" * ( |
|
num_patches // self.image_processor.merge_size ** 2) |
|
pixel_values_videos.append( |
|
slow_pixel_values_videos[slow_pixels_index:slow_pixels_index + num_patches]) |
|
slow_pixels_index = slow_pixels_index + num_patches |
|
video_grid_thw.append(slow_video_grid_thw[slow_index].tolist()) |
|
slow_index += 1 |
|
|
|
|
|
elif batch_frame_types[index][j] == 1: |
|
num_patches = int(fast_video_grid_thw[fast_index].prod()) |
|
video_place_holder_tempale += self.fast_start + "<|placeholder|>" * ( |
|
num_patches // self.image_processor.merge_size ** 2) + \ |
|
self.fast_end |
|
pixel_values_videos.append( |
|
fast_pixel_values_videos[fast_pixels_index:fast_pixels_index + num_patches]) |
|
fast_pixels_index = fast_pixels_index + num_patches |
|
video_grid_thw.append(fast_video_grid_thw[fast_index].tolist()) |
|
fast_index += 1 |
|
text[i] = text[i].replace( |
|
self.video_token, |
|
video_place_holder_tempale, |
|
1, |
|
) |
|
index += 1 |
|
text[i] = text[i].replace("<|placeholder|>", self.video_token) |
|
|
|
videos_inputs["pixel_values_videos"] = torch.cat(pixel_values_videos, dim=0) |
|
videos_inputs["video_grid_thw"] = merge_hws(video_grid_thw) |
|
videos_inputs["num_frames"] = torch.tensor(num_frames) |
|
|
|
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"]) |
|
|
|
return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs}) |
|
|
|
def batch_decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please |
|
refer to the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.batch_decode(*args, **kwargs) |
|
|
|
def decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to |
|
the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.decode(*args, **kwargs) |
|
|
|
def post_process_image_text_to_text( |
|
self, generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False, **kwargs |
|
): |
|
""" |
|
Post-process the output of the model to decode the text. |
|
|
|
Args: |
|
generated_outputs (`torch.Tensor` or `np.ndarray`): |
|
The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)` |
|
or `(sequence_length,)`. |
|
skip_special_tokens (`bool`, *optional*, defaults to `True`): |
|
Whether or not to remove special tokens in the output. Argument passed to the tokenizer's `batch_decode` method. |
|
Clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): |
|
Whether or not to clean up the tokenization spaces. Argument passed to the tokenizer's `batch_decode` method. |
|
**kwargs: |
|
Additional arguments to be passed to the tokenizer's `batch_decode method`. |
|
|
|
Returns: |
|
`List[str]`: The decoded text. |
|
""" |
|
return self.tokenizer.batch_decode( |
|
generated_outputs, |
|
skip_special_tokens=skip_special_tokens, |
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces, |
|
**kwargs, |
|
) |
|
|
|
@property |
|
def model_input_names(self): |
|
tokenizer_input_names = self.tokenizer.model_input_names |
|
image_processor_input_names = self.image_processor.model_input_names |
|
names_from_processor = list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) |
|
return names_from_processor |
|
|
|
|
|
|
|
__all__ = ["KeyeVL1_5Processor"] |
|
|