Add model files
Browse files- .gitattributes +1 -0
- .vscode/settings.json +3 -0
- added_tokens.json +40 -0
- chat_template.json +3 -0
- config.json +74 -0
- configuration_keye_vl_1_5.py +253 -0
- generation_config.json +13 -0
- image_processing_keye_vl_1_5.py +526 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +861 -0
- modeling_keye_vl_1_5.py +0 -0
- preprocessor_config.json +22 -0
- processing_keye_vl_1_5.py +421 -0
- processor_config.json +6 -0
- special_tokens_map.json +25 -0
- tokenizer.json +3 -0
- tokenizer_config.json +330 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
.vscode/settings.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"kwaipilot.settings.proxy": "https://kinsight.corp.kuaishou.com"
|
3 |
+
}
|
added_tokens.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</think>": 151668,
|
3 |
+
"</tool_call>": 151658,
|
4 |
+
"</tool_response>": 151666,
|
5 |
+
"<think>": 151667,
|
6 |
+
"<tool_call>": 151657,
|
7 |
+
"<tool_response>": 151665,
|
8 |
+
"<|box_end|>": 151649,
|
9 |
+
"<|box_start|>": 151648,
|
10 |
+
"<|clip_time_end|>": 151674,
|
11 |
+
"<|clip_time_start|>": 151673,
|
12 |
+
"<|endoftext|>": 151643,
|
13 |
+
"<|fast_end|>": 151680,
|
14 |
+
"<|fast_start|>": 151679,
|
15 |
+
"<|fast_video_pad|>": 151678,
|
16 |
+
"<|file_sep|>": 151664,
|
17 |
+
"<|fim_middle|>": 151660,
|
18 |
+
"<|fim_pad|>": 151662,
|
19 |
+
"<|fim_prefix|>": 151659,
|
20 |
+
"<|fim_suffix|>": 151661,
|
21 |
+
"<|frame|>": 151677,
|
22 |
+
"<|im_end|>": 151645,
|
23 |
+
"<|im_start|>": 151644,
|
24 |
+
"<|image_pad|>": 151655,
|
25 |
+
"<|object_ref_end|>": 151647,
|
26 |
+
"<|object_ref_start|>": 151646,
|
27 |
+
"<|ocr_text_end|>": 151672,
|
28 |
+
"<|ocr_text_start|>": 151671,
|
29 |
+
"<|point_end|>": 151670,
|
30 |
+
"<|point_start|>": 151669,
|
31 |
+
"<|polygon_end|>": 151676,
|
32 |
+
"<|polygon_start|>": 151675,
|
33 |
+
"<|quad_end|>": 151651,
|
34 |
+
"<|quad_start|>": 151650,
|
35 |
+
"<|repo_name|>": 151663,
|
36 |
+
"<|video_pad|>": 151656,
|
37 |
+
"<|vision_end|>": 151653,
|
38 |
+
"<|vision_pad|>": 151654,
|
39 |
+
"<|vision_start|>": 151652
|
40 |
+
}
|
chat_template.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
|
3 |
+
}
|
config.json
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_commit_hash": null,
|
3 |
+
"auto_map": {
|
4 |
+
"AutoConfig": "configuration_keye_vl_1_5.KeyeVL1_5Config",
|
5 |
+
"AutoModel": "modeling_keye_vl_1_5.KeyeVL1_5ForConditionalGeneration",
|
6 |
+
"AutoModelForCausalLM": "modeling_keye_vl_1_5.KeyeVL1_5ForConditionalGeneration"
|
7 |
+
},
|
8 |
+
"architectures": [
|
9 |
+
"KeyeVL1_5ForConditionalGeneration"
|
10 |
+
],
|
11 |
+
"attention_bias": false,
|
12 |
+
"attention_dropout": 0.0,
|
13 |
+
"bos_token_id": 151643,
|
14 |
+
"eos_token_id": 151645,
|
15 |
+
"vision_start_token_id": 151652,
|
16 |
+
"vision_end_token_id": 151653,
|
17 |
+
"vision_token_id": 151654,
|
18 |
+
"image_token_id": 151655,
|
19 |
+
"video_token_id": 151656,
|
20 |
+
"fast_video_token_id": 151678,
|
21 |
+
"head_dim": 128,
|
22 |
+
"hidden_act": "silu",
|
23 |
+
"hidden_size": 4096,
|
24 |
+
"initializer_range": 0.02,
|
25 |
+
"intermediate_size": 12288,
|
26 |
+
"max_position_embeddings": 131072,
|
27 |
+
"max_window_layers": 36,
|
28 |
+
"model_type": "KeyeVL1_5",
|
29 |
+
"num_attention_heads": 32,
|
30 |
+
"num_hidden_layers": 36,
|
31 |
+
"num_key_value_heads": 8,
|
32 |
+
"rms_norm_eps": 1e-06,
|
33 |
+
"rope_theta": 8000000,
|
34 |
+
"sliding_window": null,
|
35 |
+
"tie_word_embeddings": false,
|
36 |
+
"torch_dtype": "bfloat16",
|
37 |
+
"transformers_version": "4.41.2",
|
38 |
+
"use_cache": true,
|
39 |
+
"use_sliding_window": false,
|
40 |
+
"initializer_factor": 1.0,
|
41 |
+
"vision_config": {
|
42 |
+
"_attn_implementation_autoset": true,
|
43 |
+
"add_cross_attention": false,
|
44 |
+
"architectures": [
|
45 |
+
"KeyeVL1_5VisionModel"
|
46 |
+
],
|
47 |
+
"attention_dropout": 0.0,
|
48 |
+
"auto_map": {
|
49 |
+
"AutoConfig": "configuration_keye_vl_1_5.KeyeVL1_5VisionConfig",
|
50 |
+
"AutoModel": "modeling_keye_vl_1_5.KeyeVL1_5VisionModel"
|
51 |
+
},
|
52 |
+
"hidden_size": 1152,
|
53 |
+
"image_size": 384,
|
54 |
+
"intermediate_size": 4304,
|
55 |
+
"model_type": "keye_vl_1_5_vision_model",
|
56 |
+
"num_attention_heads": 16,
|
57 |
+
"num_hidden_layers": 27,
|
58 |
+
"patch_size": 14,
|
59 |
+
"spatial_merge_size": 2,
|
60 |
+
"tokens_per_second": 2,
|
61 |
+
"temporal_patch_size": 2,
|
62 |
+
"rope_theta": 10000,
|
63 |
+
"has_learnable_position_embedding": true
|
64 |
+
},
|
65 |
+
"rope_scaling": {
|
66 |
+
"type": "mrope",
|
67 |
+
"mrope_section": [
|
68 |
+
16,
|
69 |
+
24,
|
70 |
+
24
|
71 |
+
]
|
72 |
+
},
|
73 |
+
"vocab_size": 151936
|
74 |
+
}
|
configuration_keye_vl_1_5.py
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025 The Keye Team and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
from transformers.configuration_utils import PretrainedConfig
|
21 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
class KeyeVL1_5VisionConfig(PretrainedConfig):
|
26 |
+
model_type = "keye_vl_1_5_vision_model"
|
27 |
+
base_config_key = "vision_config"
|
28 |
+
|
29 |
+
def __init__(
|
30 |
+
self,
|
31 |
+
hidden_size=768,
|
32 |
+
intermediate_size=3072,
|
33 |
+
num_hidden_layers=12,
|
34 |
+
num_attention_heads=12,
|
35 |
+
num_channels=3,
|
36 |
+
image_size=224,
|
37 |
+
patch_size=14,
|
38 |
+
hidden_act="gelu_pytorch_tanh",
|
39 |
+
layer_norm_eps=1e-6,
|
40 |
+
attention_dropout=0.0,
|
41 |
+
spatial_merge_size=2,
|
42 |
+
temporal_patch_size=2,
|
43 |
+
tokens_per_second=2,
|
44 |
+
**kwargs,
|
45 |
+
):
|
46 |
+
super().__init__(**kwargs)
|
47 |
+
|
48 |
+
self.hidden_size = hidden_size
|
49 |
+
self.intermediate_size = intermediate_size
|
50 |
+
self.num_hidden_layers = num_hidden_layers
|
51 |
+
self.num_attention_heads = num_attention_heads
|
52 |
+
self.num_channels = num_channels
|
53 |
+
self.patch_size = patch_size
|
54 |
+
self.image_size = image_size
|
55 |
+
self.attention_dropout = attention_dropout
|
56 |
+
self.layer_norm_eps = layer_norm_eps
|
57 |
+
self.hidden_act = hidden_act
|
58 |
+
self.spatial_merge_size = spatial_merge_size
|
59 |
+
self.temporal_patch_size = temporal_patch_size
|
60 |
+
self.tokens_per_second = tokens_per_second
|
61 |
+
|
62 |
+
|
63 |
+
class KeyeVL1_5Config(PretrainedConfig):
|
64 |
+
r"""
|
65 |
+
This is the configuration class to store the configuration of a [`KeyeVL1_5Model`]. It is used to instantiate a
|
66 |
+
Keye-VL-1.5 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
67 |
+
with the defaults will yield a similar configuration to that of
|
68 |
+
Keye-VL-1.5.
|
69 |
+
|
70 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
71 |
+
documentation from [`PretrainedConfig`] for more information.
|
72 |
+
|
73 |
+
|
74 |
+
Args:
|
75 |
+
vocab_size (`int`, *optional*, defaults to 152064):
|
76 |
+
Vocabulary size of the KeyeVL1_5 model. Defines the number of different tokens that can be represented by the
|
77 |
+
`inputs_ids` passed when calling [`KeyeVL1_5Model`]
|
78 |
+
hidden_size (`int`, *optional*, defaults to 8192):
|
79 |
+
Dimension of the hidden representations.
|
80 |
+
intermediate_size (`int`, *optional*, defaults to 29568):
|
81 |
+
Dimension of the MLP representations.
|
82 |
+
num_hidden_layers (`int`, *optional*, defaults to 80):
|
83 |
+
Number of hidden layers in the Transformer encoder.
|
84 |
+
num_attention_heads (`int`, *optional*, defaults to 64):
|
85 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
86 |
+
num_key_value_heads (`int`, *optional*, defaults to 8):
|
87 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
88 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
89 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
90 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
91 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
92 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
93 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
94 |
+
The non-linear activation function (function or string) in the decoder.
|
95 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
96 |
+
The maximum sequence length that this model might ever be used with.
|
97 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
98 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
99 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
100 |
+
The epsilon used by the rms normalization layers.
|
101 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
102 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
103 |
+
relevant if `config.is_decoder=True`.
|
104 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
105 |
+
Whether the model's input and output word embeddings should be tied.
|
106 |
+
rope_theta (`float`, *optional*, defaults to 1000000.0):
|
107 |
+
The base period of the RoPE embeddings.
|
108 |
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
109 |
+
Whether to use sliding window attention.
|
110 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
111 |
+
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
112 |
+
max_window_layers (`int`, *optional*, defaults to 80):
|
113 |
+
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
114 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
115 |
+
The dropout ratio for the attention probabilities.
|
116 |
+
vision_config (`Dict`, *optional*):
|
117 |
+
The config for the visual encoder initialization.
|
118 |
+
rope_scaling (`Dict`, *optional*):
|
119 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
120 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
121 |
+
accordingly.
|
122 |
+
Expected contents:
|
123 |
+
`rope_type` (`str`):
|
124 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
125 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
126 |
+
`factor` (`float`, *optional*):
|
127 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
128 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
129 |
+
original maximum pre-trained length.
|
130 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
131 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
132 |
+
pretraining.
|
133 |
+
`attention_factor` (`float`, *optional*):
|
134 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
135 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
136 |
+
`factor` field to infer the suggested value.
|
137 |
+
`beta_fast` (`float`, *optional*):
|
138 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
139 |
+
ramp function. If unspecified, it defaults to 32.
|
140 |
+
`beta_slow` (`float`, *optional*):
|
141 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
142 |
+
ramp function. If unspecified, it defaults to 1.
|
143 |
+
`short_factor` (`List[float]`, *optional*):
|
144 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
145 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
146 |
+
size divided by the number of attention heads divided by 2
|
147 |
+
`long_factor` (`List[float]`, *optional*):
|
148 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
149 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
150 |
+
size divided by the number of attention heads divided by 2
|
151 |
+
`low_freq_factor` (`float`, *optional*):
|
152 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
153 |
+
`high_freq_factor` (`float`, *optional*):
|
154 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
155 |
+
|
156 |
+
```python
|
157 |
+
>>> from transformers import KeyeVL1_5ForConditionalGeneration, KeyeVL1_5Config
|
158 |
+
|
159 |
+
>>> # Initializing a KeyeVL1_5 style configuration
|
160 |
+
>>> configuration = KeyeVL1_5Config()
|
161 |
+
|
162 |
+
>>> # Initializing a model from the Keye-VL-1.5-8B style configuration
|
163 |
+
>>> model = KeyeVL1_5ForConditionalGeneration(configuration)
|
164 |
+
|
165 |
+
>>> # Accessing the model configuration
|
166 |
+
>>> configuration = model.config
|
167 |
+
```"""
|
168 |
+
|
169 |
+
model_type = "KeyeVL1_5"
|
170 |
+
sub_configs = {"vision_config": KeyeVL1_5VisionConfig}
|
171 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
172 |
+
# Default tensor parallel plan for base model `KeyeVL1_5`
|
173 |
+
base_model_tp_plan = {
|
174 |
+
"layers.*.self_attn.q_proj": "colwise",
|
175 |
+
"layers.*.self_attn.k_proj": "colwise",
|
176 |
+
"layers.*.self_attn.v_proj": "colwise",
|
177 |
+
"layers.*.self_attn.o_proj": "rowwise",
|
178 |
+
"layers.*.mlp.gate_proj": "colwise",
|
179 |
+
"layers.*.mlp.up_proj": "colwise",
|
180 |
+
"layers.*.mlp.down_proj": "rowwise",
|
181 |
+
}
|
182 |
+
base_model_pp_plan = {
|
183 |
+
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
184 |
+
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
185 |
+
"norm": (["hidden_states"], ["hidden_states"]),
|
186 |
+
}
|
187 |
+
|
188 |
+
def __init__(
|
189 |
+
self,
|
190 |
+
vocab_size=152064,
|
191 |
+
hidden_size=8192,
|
192 |
+
intermediate_size=29568,
|
193 |
+
num_hidden_layers=80,
|
194 |
+
num_attention_heads=64,
|
195 |
+
num_key_value_heads=8,
|
196 |
+
hidden_act="silu",
|
197 |
+
max_position_embeddings=131072,
|
198 |
+
initializer_range=0.02,
|
199 |
+
rms_norm_eps=1e-05,
|
200 |
+
use_cache=True,
|
201 |
+
tie_word_embeddings=False,
|
202 |
+
rope_theta=8000000.0,
|
203 |
+
use_sliding_window=False,
|
204 |
+
sliding_window=4096,
|
205 |
+
max_window_layers=80,
|
206 |
+
attention_dropout=0.0,
|
207 |
+
vision_config=None,
|
208 |
+
rope_scaling=None,
|
209 |
+
**kwargs,
|
210 |
+
):
|
211 |
+
if isinstance(vision_config, dict):
|
212 |
+
self.vision_config = self.sub_configs["vision_config"](**vision_config)
|
213 |
+
elif vision_config is None:
|
214 |
+
self.vision_config = self.sub_configs["vision_config"]()
|
215 |
+
|
216 |
+
self.vocab_size = vocab_size
|
217 |
+
self.max_position_embeddings = max_position_embeddings
|
218 |
+
self.hidden_size = hidden_size
|
219 |
+
self.intermediate_size = intermediate_size
|
220 |
+
self.num_hidden_layers = num_hidden_layers
|
221 |
+
self.num_attention_heads = num_attention_heads
|
222 |
+
self.use_sliding_window = use_sliding_window
|
223 |
+
self.sliding_window = sliding_window
|
224 |
+
self.max_window_layers = max_window_layers
|
225 |
+
|
226 |
+
# for backward compatibility
|
227 |
+
if num_key_value_heads is None:
|
228 |
+
num_key_value_heads = num_attention_heads
|
229 |
+
|
230 |
+
self.num_key_value_heads = num_key_value_heads
|
231 |
+
self.hidden_act = hidden_act
|
232 |
+
self.initializer_range = initializer_range
|
233 |
+
self.rms_norm_eps = rms_norm_eps
|
234 |
+
self.use_cache = use_cache
|
235 |
+
self.rope_theta = rope_theta
|
236 |
+
self.attention_dropout = attention_dropout
|
237 |
+
self.rope_scaling = rope_scaling
|
238 |
+
|
239 |
+
# Validate the correctness of rotary position embeddings parameters
|
240 |
+
# BC: if there is a 'type' field, move it to 'rope_type'.
|
241 |
+
# and change type from 'mrope' to 'default' because `mrope` does default RoPE calculations
|
242 |
+
# one can set it to "linear"/"dynamic" etc. to have scaled RoPE
|
243 |
+
# TODO: @raushan update config in the hub
|
244 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
245 |
+
if self.rope_scaling["type"] == "mrope":
|
246 |
+
self.rope_scaling["type"] = "default"
|
247 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
248 |
+
rope_config_validation(self, ignore_keys={"mrope_section"})
|
249 |
+
|
250 |
+
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
251 |
+
|
252 |
+
|
253 |
+
__all__ = ["KeyeVL1_5Config"]
|
generation_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"temperature": 0.6,
|
10 |
+
"top_k": 20,
|
11 |
+
"top_p": 0.95,
|
12 |
+
"transformers_version": "4.51.0"
|
13 |
+
}
|
image_processing_keye_vl_1_5.py
ADDED
@@ -0,0 +1,526 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The Keye team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
"""Image processor class for Keye-VL-1.5."""
|
21 |
+
|
22 |
+
import math
|
23 |
+
from typing import Dict, List, Optional, Union
|
24 |
+
from PIL import Image
|
25 |
+
|
26 |
+
import numpy as np
|
27 |
+
import torch
|
28 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
29 |
+
from torchvision.transforms import functional as TF
|
30 |
+
from transformers.image_transforms import (
|
31 |
+
convert_to_rgb,
|
32 |
+
resize,
|
33 |
+
to_channel_dimension_format,
|
34 |
+
)
|
35 |
+
from transformers.image_utils import (
|
36 |
+
OPENAI_CLIP_MEAN,
|
37 |
+
OPENAI_CLIP_STD,
|
38 |
+
ChannelDimension,
|
39 |
+
ImageInput,
|
40 |
+
PILImageResampling,
|
41 |
+
get_image_size,
|
42 |
+
infer_channel_dimension_format,
|
43 |
+
is_scaled_image,
|
44 |
+
is_valid_image,
|
45 |
+
make_list_of_images,
|
46 |
+
to_numpy_array,
|
47 |
+
valid_images,
|
48 |
+
validate_preprocess_arguments,
|
49 |
+
)
|
50 |
+
from transformers.video_utils import VideoInput
|
51 |
+
from transformers.utils import TensorType, is_vision_available, logging
|
52 |
+
|
53 |
+
|
54 |
+
logger = logging.get_logger(__name__)
|
55 |
+
|
56 |
+
|
57 |
+
if is_vision_available():
|
58 |
+
from PIL import Image
|
59 |
+
|
60 |
+
|
61 |
+
def make_batched_images(images) -> List[List[ImageInput]]:
|
62 |
+
"""
|
63 |
+
Accepts images in list or nested list format, and makes a list of images for preprocessing.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
|
67 |
+
The input image.
|
68 |
+
|
69 |
+
Returns:
|
70 |
+
list: A list of images.
|
71 |
+
"""
|
72 |
+
if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]):
|
73 |
+
return [img for img_list in images for img in img_list]
|
74 |
+
|
75 |
+
elif isinstance(images, (list, tuple)) and is_valid_image(images[0]):
|
76 |
+
return images
|
77 |
+
|
78 |
+
elif is_valid_image(images):
|
79 |
+
return [images]
|
80 |
+
|
81 |
+
raise ValueError(f"Could not make batched images from {images}")
|
82 |
+
|
83 |
+
|
84 |
+
def adjust_size(size, patch_size):
|
85 |
+
num_patches = size // patch_size
|
86 |
+
if num_patches % 2 != 0: # 如果是奇数,减1
|
87 |
+
num_patches -= 1
|
88 |
+
return num_patches * patch_size
|
89 |
+
|
90 |
+
|
91 |
+
def make_batched_videos(videos) -> List[VideoInput]:
|
92 |
+
if isinstance(videos, (list, tuple)) and isinstance(videos[0], (list, tuple)) and is_valid_image(videos[0][0]):
|
93 |
+
return videos
|
94 |
+
|
95 |
+
elif isinstance(videos, (list, tuple)) and is_valid_image(videos[0]):
|
96 |
+
if isinstance(videos[0], Image.Image):
|
97 |
+
return [videos]
|
98 |
+
elif len(videos[0].shape) == 4:
|
99 |
+
return [list(video) for video in videos]
|
100 |
+
|
101 |
+
elif is_valid_image(videos) and len(videos.shape) == 4:
|
102 |
+
return [list(videos)]
|
103 |
+
|
104 |
+
raise ValueError(f"Could not make batched video from {videos}")
|
105 |
+
|
106 |
+
|
107 |
+
def smart_resize(
|
108 |
+
height: int, width: int, factor: int = 28, min_pixels: int = 56 * 56, max_pixels: int = 14 * 14 * 4096
|
109 |
+
):
|
110 |
+
"""Rescales the image so that the following conditions are met:
|
111 |
+
|
112 |
+
1. Both dimensions (height and width) are divisible by 'factor'.
|
113 |
+
|
114 |
+
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
|
115 |
+
|
116 |
+
3. The aspect ratio of the image is maintained as closely as possible.
|
117 |
+
|
118 |
+
"""
|
119 |
+
#if height < factor or width < factor:
|
120 |
+
# raise ValueError(f"height:{height} or width:{width} must be larger than factor:{factor}")
|
121 |
+
# if int(height < factor//4) + int(width < factor//4):
|
122 |
+
# raise ValueError(f"height:{height} or width:{width} must be larger than factor:{factor//4}")
|
123 |
+
|
124 |
+
if height < factor:
|
125 |
+
print(f"smart_resize: height={height} < factor={factor}, reset height=factor")
|
126 |
+
width = round((width * factor) / height)
|
127 |
+
height = factor
|
128 |
+
|
129 |
+
if width < factor:
|
130 |
+
print(f"smart_resize: width={width} < factor={factor}, reset width=factor")
|
131 |
+
height = round((height * factor) / width)
|
132 |
+
width = factor
|
133 |
+
|
134 |
+
if max(height, width) / min(height, width) > 200:
|
135 |
+
raise ValueError(
|
136 |
+
f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}"
|
137 |
+
)
|
138 |
+
h_bar = round(height / factor) * factor
|
139 |
+
w_bar = round(width / factor) * factor
|
140 |
+
if h_bar * w_bar > max_pixels:
|
141 |
+
beta = math.sqrt((height * width) / max_pixels)
|
142 |
+
h_bar = math.floor(height / beta / factor) * factor
|
143 |
+
w_bar = math.floor(width / beta / factor) * factor
|
144 |
+
elif h_bar * w_bar < min_pixels:
|
145 |
+
beta = math.sqrt(min_pixels / (height * width))
|
146 |
+
h_bar = math.ceil(height * beta / factor) * factor
|
147 |
+
w_bar = math.ceil(width * beta / factor) * factor
|
148 |
+
return h_bar, w_bar
|
149 |
+
|
150 |
+
|
151 |
+
class KeyeVL1_5ImageProcessor(BaseImageProcessor):
|
152 |
+
r"""
|
153 |
+
Constructs a Keye-VL-1.5 image processor that dynamically resizes images based on the original images.
|
154 |
+
|
155 |
+
Args:
|
156 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
157 |
+
Whether to resize the image's (height, width) dimensions.
|
158 |
+
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
|
159 |
+
Resampling filter to use when resizing the image.
|
160 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
161 |
+
Whether to rescale the image by the specified scale `rescale_factor`.
|
162 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
163 |
+
Scale factor to use if rescaling the image.
|
164 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
165 |
+
Whether to normalize the image.
|
166 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
|
167 |
+
Mean to use if normalizing the image. This is a float or list of floats for each channel in the image.
|
168 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
|
169 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats for each channel in the image.
|
170 |
+
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
171 |
+
Whether to convert the image to RGB.
|
172 |
+
min_pixels (`int`, *optional*, defaults to `56 * 56`):
|
173 |
+
The min pixels of the image to resize the image.
|
174 |
+
max_pixels (`int`, *optional*, defaults to `28 * 28 * 1280`):
|
175 |
+
The max pixels of the image to resize the image.
|
176 |
+
patch_size (`int`, *optional*, defaults to 14):
|
177 |
+
The spacial patch size of the vision encoder.
|
178 |
+
temporal_patch_size (`int`, *optional*, defaults to 2):
|
179 |
+
The temporal patch size of the vision encoder.
|
180 |
+
merge_size (`int`, *optional*, defaults to 2):
|
181 |
+
The merge size of the vision encoder to llm encoder.
|
182 |
+
"""
|
183 |
+
|
184 |
+
model_input_names = ["pixel_values", "image_grid_thw", "pixel_values_videos", "video_grid_thw"]
|
185 |
+
|
186 |
+
def __init__(
|
187 |
+
self,
|
188 |
+
do_resize: bool = True,
|
189 |
+
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
190 |
+
do_rescale: bool = True,
|
191 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
192 |
+
do_normalize: bool = True,
|
193 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
194 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
195 |
+
do_convert_rgb: bool = True,
|
196 |
+
min_pixels: int = 56 * 56,
|
197 |
+
max_pixels: int = 28 * 28 * 1280,
|
198 |
+
patch_size: int = 14,
|
199 |
+
temporal_patch_size: int = 1,
|
200 |
+
merge_size: int = 2,
|
201 |
+
**kwargs,
|
202 |
+
) -> None:
|
203 |
+
super().__init__(**kwargs)
|
204 |
+
self.do_resize = do_resize
|
205 |
+
self.resample = resample
|
206 |
+
self.do_rescale = do_rescale
|
207 |
+
self.rescale_factor = rescale_factor
|
208 |
+
self.do_normalize = do_normalize
|
209 |
+
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
210 |
+
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
211 |
+
self.min_pixels = min_pixels
|
212 |
+
self.max_pixels = max_pixels
|
213 |
+
self.patch_size = patch_size
|
214 |
+
self.temporal_patch_size = temporal_patch_size
|
215 |
+
self.merge_size = merge_size
|
216 |
+
self.size = {"min_pixels": min_pixels, "max_pixels": max_pixels}
|
217 |
+
self.do_convert_rgb = do_convert_rgb
|
218 |
+
|
219 |
+
def mvit_rescale(
|
220 |
+
self, image: Image.Image, merge_size: int = 2
|
221 |
+
) -> Image.Image:
|
222 |
+
try:
|
223 |
+
w, h = image.size
|
224 |
+
except:
|
225 |
+
raise ValueError(str((type(image), image)))
|
226 |
+
patch_size = self.patch_size
|
227 |
+
|
228 |
+
if (w // patch_size) * (h // patch_size) > self.in_token_limit:
|
229 |
+
scale = math.sqrt(self.in_token_limit / ((w // patch_size) * (h // patch_size)))
|
230 |
+
new_w, new_h = int(w * scale), int(h * scale)
|
231 |
+
|
232 |
+
image = image.resize((new_w, new_h), Image.Resampling.BILINEAR)
|
233 |
+
if self.pad_input:
|
234 |
+
new_w, new_h = image.size
|
235 |
+
pad_size_h = merge_size * patch_size
|
236 |
+
pad_size_w = merge_size * patch_size
|
237 |
+
|
238 |
+
pad_h = (pad_size_h - new_h % pad_size_h) % pad_size_h
|
239 |
+
pad_w = (pad_size_w - new_w % pad_size_w) % pad_size_w
|
240 |
+
|
241 |
+
image = TF.pad(image, (0, 0, pad_w, pad_h))
|
242 |
+
else:
|
243 |
+
new_w, new_h = image.size
|
244 |
+
new_w = new_w - new_w % patch_size
|
245 |
+
new_h = new_h - new_h % patch_size
|
246 |
+
|
247 |
+
new_w = adjust_size(new_w, patch_size)
|
248 |
+
new_h = adjust_size(new_h, patch_size)
|
249 |
+
|
250 |
+
image = TF.center_crop(image, (new_h, new_w))
|
251 |
+
|
252 |
+
w, h = image.size
|
253 |
+
if w // patch_size >= 512 or h // patch_size >= 512:
|
254 |
+
new_h = min(patch_size * 510, h)
|
255 |
+
new_w = min(patch_size * 510, w)
|
256 |
+
image = TF.center_crop(image, (new_h, new_w))
|
257 |
+
#raise ValueError("Exceed pos emb")
|
258 |
+
return image
|
259 |
+
def _preprocess(
|
260 |
+
self,
|
261 |
+
images: Union[ImageInput, VideoInput],
|
262 |
+
do_resize: bool = None,
|
263 |
+
size: Dict[str, int] = None,
|
264 |
+
resample: PILImageResampling = None,
|
265 |
+
do_rescale: bool = None,
|
266 |
+
rescale_factor: float = None,
|
267 |
+
do_normalize: bool = None,
|
268 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
269 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
270 |
+
do_convert_rgb: bool = None,
|
271 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
272 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
273 |
+
):
|
274 |
+
"""
|
275 |
+
Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`.
|
276 |
+
|
277 |
+
Args:
|
278 |
+
images (`ImageInput`):
|
279 |
+
Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`.
|
280 |
+
vision_info (`List[Dict]`, *optional*):
|
281 |
+
Optional list of dictionaries containing additional information about vision inputs.
|
282 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
283 |
+
Whether to resize the image.
|
284 |
+
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
|
285 |
+
Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
|
286 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
287 |
+
Whether to rescale the image.
|
288 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
289 |
+
Scale factor to use if rescaling the image.
|
290 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
291 |
+
Whether to normalize the image.
|
292 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
293 |
+
Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
|
294 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
295 |
+
Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
|
296 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
297 |
+
Whether to convert the image to RGB.
|
298 |
+
data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
|
299 |
+
The channel dimension format for the output image. Can be one of:
|
300 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
301 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
302 |
+
- Unset: Use the channel dimension format of the input image.
|
303 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
304 |
+
The channel dimension format for the input image. Can be one of:
|
305 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
306 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
307 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
308 |
+
"""
|
309 |
+
images = make_list_of_images(images)
|
310 |
+
|
311 |
+
if do_convert_rgb:
|
312 |
+
images = [convert_to_rgb(image) for image in images]
|
313 |
+
|
314 |
+
# All transformations expect numpy arrays.
|
315 |
+
images = [to_numpy_array(image) for image in images]
|
316 |
+
|
317 |
+
if is_scaled_image(images[0]) and do_rescale:
|
318 |
+
logger.warning_once(
|
319 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
320 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
321 |
+
)
|
322 |
+
if input_data_format is None:
|
323 |
+
# We assume that all images have the same channel dimension format.
|
324 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
325 |
+
|
326 |
+
height, width = get_image_size(images[0], channel_dim=input_data_format)
|
327 |
+
resized_height, resized_width = height, width
|
328 |
+
processed_images = []
|
329 |
+
for image in images:
|
330 |
+
# image = self.mvit_rescale(image, merge_size=self.merge_size)
|
331 |
+
if do_resize:
|
332 |
+
if size is not None and "height" in size.keys():
|
333 |
+
resized_height, resized_width = size["height"], size["width"]
|
334 |
+
else:
|
335 |
+
resized_height, resized_width = smart_resize(
|
336 |
+
height,
|
337 |
+
width,
|
338 |
+
factor=self.patch_size * self.merge_size,
|
339 |
+
min_pixels=self.min_pixels,
|
340 |
+
max_pixels=self.max_pixels,
|
341 |
+
)
|
342 |
+
image = resize(
|
343 |
+
image, size=(resized_height, resized_width), resample=resample, input_data_format=input_data_format
|
344 |
+
)
|
345 |
+
|
346 |
+
if do_rescale:
|
347 |
+
image = self.rescale(image, scale=rescale_factor, input_data_format=input_data_format)
|
348 |
+
|
349 |
+
if do_normalize:
|
350 |
+
image = self.normalize(
|
351 |
+
image=image, mean=image_mean, std=image_std, input_data_format=input_data_format
|
352 |
+
)
|
353 |
+
|
354 |
+
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
|
355 |
+
processed_images.append(image)
|
356 |
+
|
357 |
+
patches = np.array(processed_images)
|
358 |
+
if data_format == ChannelDimension.LAST:
|
359 |
+
patches = patches.transpose(0, 3, 1, 2)
|
360 |
+
if patches.shape[0] == 1:
|
361 |
+
patches = np.tile(patches, (self.temporal_patch_size, 1, 1, 1))
|
362 |
+
init_patches = patches
|
363 |
+
channel = patches.shape[1]
|
364 |
+
grid_t = patches.shape[0] // self.temporal_patch_size
|
365 |
+
grid_h, grid_w = resized_height // self.patch_size, resized_width // self.patch_size
|
366 |
+
patches = patches.reshape(
|
367 |
+
grid_t,
|
368 |
+
self.temporal_patch_size,
|
369 |
+
channel,
|
370 |
+
grid_h,
|
371 |
+
self.patch_size,
|
372 |
+
grid_w,
|
373 |
+
self.patch_size,
|
374 |
+
)
|
375 |
+
patches = patches.transpose(0, 3, 5, 2, 1, 4, 6)
|
376 |
+
assert self.temporal_patch_size == 1
|
377 |
+
flatten_patches = patches.reshape(
|
378 |
+
grid_t * grid_h * grid_w, channel, self.patch_size, self.patch_size
|
379 |
+
)
|
380 |
+
return flatten_patches, (grid_t, grid_h, grid_w)
|
381 |
+
|
382 |
+
def preprocess(
|
383 |
+
self,
|
384 |
+
images: ImageInput,
|
385 |
+
videos: VideoInput = None,
|
386 |
+
do_resize: bool = None,
|
387 |
+
size: Dict[str, int] = None,
|
388 |
+
resample: PILImageResampling = None,
|
389 |
+
do_rescale: bool = None,
|
390 |
+
rescale_factor: float = None,
|
391 |
+
do_normalize: bool = None,
|
392 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
393 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
394 |
+
do_convert_rgb: bool = None,
|
395 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
396 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
397 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
398 |
+
):
|
399 |
+
"""
|
400 |
+
Args:
|
401 |
+
images (`ImageInput`):
|
402 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
403 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
404 |
+
videos (`VideoInput`):
|
405 |
+
Video to preprocess. Expects a single or batch of videos with pixel values ranging from 0 to 255. If
|
406 |
+
passing in videos with pixel values between 0 and 1, set `do_rescale=False`.
|
407 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
408 |
+
Whether to resize the image.
|
409 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
410 |
+
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
|
411 |
+
the longest edge resized to keep the input aspect ratio.
|
412 |
+
resample (`int`, *optional*, defaults to `self.resample`):
|
413 |
+
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
|
414 |
+
has an effect if `do_resize` is set to `True`.
|
415 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
416 |
+
Whether to rescale the image.
|
417 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
418 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
419 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
420 |
+
Whether to normalize the image.
|
421 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
422 |
+
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
423 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
424 |
+
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
425 |
+
`True`.
|
426 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
427 |
+
Whether to convert the image to RGB.
|
428 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
429 |
+
The type of tensors to return. Can be one of:
|
430 |
+
- Unset: Return a list of `np.ndarray`.
|
431 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
432 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
433 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
434 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
435 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
436 |
+
The channel dimension format for the output image. Can be one of:
|
437 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
438 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
439 |
+
- Unset: Use the channel dimension format of the input image.
|
440 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
441 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
442 |
+
from the input image. Can be one of:
|
443 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
444 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
445 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
446 |
+
|
447 |
+
"""
|
448 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
449 |
+
size = size if size is not None else self.size
|
450 |
+
resample = resample if resample is not None else self.resample
|
451 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
452 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
453 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
454 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
455 |
+
image_std = image_std if image_std is not None else self.image_std
|
456 |
+
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
457 |
+
|
458 |
+
if images is not None:
|
459 |
+
images = make_batched_images(images)
|
460 |
+
if videos is not None:
|
461 |
+
videos = make_batched_videos(videos)
|
462 |
+
|
463 |
+
if images is not None and not valid_images(images):
|
464 |
+
raise ValueError(
|
465 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
466 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
467 |
+
)
|
468 |
+
|
469 |
+
validate_preprocess_arguments(
|
470 |
+
rescale_factor=rescale_factor,
|
471 |
+
do_normalize=do_normalize,
|
472 |
+
image_mean=image_mean,
|
473 |
+
image_std=image_std,
|
474 |
+
do_resize=do_resize,
|
475 |
+
size=size,
|
476 |
+
resample=resample,
|
477 |
+
)
|
478 |
+
|
479 |
+
if images is not None:
|
480 |
+
pixel_values, vision_grid_thws = [], []
|
481 |
+
for image in images:
|
482 |
+
patches, image_grid_thw = self._preprocess(
|
483 |
+
image,
|
484 |
+
do_resize=do_resize,
|
485 |
+
size = size,
|
486 |
+
resample=resample,
|
487 |
+
do_rescale=do_rescale,
|
488 |
+
rescale_factor=rescale_factor,
|
489 |
+
do_normalize=do_normalize,
|
490 |
+
image_mean=image_mean,
|
491 |
+
image_std=image_std,
|
492 |
+
data_format=data_format,
|
493 |
+
do_convert_rgb=do_convert_rgb,
|
494 |
+
input_data_format=input_data_format,
|
495 |
+
)
|
496 |
+
pixel_values.extend(patches)
|
497 |
+
vision_grid_thws.append(image_grid_thw)
|
498 |
+
pixel_values = np.array(pixel_values)
|
499 |
+
vision_grid_thws = np.array(vision_grid_thws)
|
500 |
+
data = {"pixel_values": pixel_values, "image_grid_thw": vision_grid_thws}
|
501 |
+
|
502 |
+
if videos is not None:
|
503 |
+
pixel_values, vision_grid_thws = [], []
|
504 |
+
for images in videos:
|
505 |
+
patches, video_grid_thw = self._preprocess(
|
506 |
+
images,
|
507 |
+
do_resize=do_resize,
|
508 |
+
size = size,
|
509 |
+
resample=resample,
|
510 |
+
do_rescale=do_rescale,
|
511 |
+
rescale_factor=rescale_factor,
|
512 |
+
do_normalize=do_normalize,
|
513 |
+
image_mean=image_mean,
|
514 |
+
image_std=image_std,
|
515 |
+
data_format=data_format,
|
516 |
+
do_convert_rgb=do_convert_rgb,
|
517 |
+
input_data_format=input_data_format,
|
518 |
+
)
|
519 |
+
pixel_values.extend(patches)
|
520 |
+
vision_grid_thws.append(video_grid_thw)
|
521 |
+
pixel_values = np.array(pixel_values)
|
522 |
+
vision_grid_thws = np.array(vision_grid_thws)
|
523 |
+
data = {"pixel_values_videos": pixel_values, "video_grid_thw": vision_grid_thws}
|
524 |
+
|
525 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
526 |
+
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40421527cb4e73dba5378b1358a1bc7ebae7be86fc2628320bd3adca6b201e3b
|
3 |
+
size 4991733616
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a4e999daadded42c13e6a2b7971f125a1f8e75ea2f92520ef1f09b5afb9e59d8
|
3 |
+
size 4983069200
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a2eceb9d42149b3e0ee3bd03491656e4a990bec5f0e038ba2be028ab031dc9c
|
3 |
+
size 4915943752
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37e8cbd1245435f46f5a402dc4747ffb55f9c5906d9617adcb31927e1aadbc60
|
3 |
+
size 2503030568
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,861 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 17393671296
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"mlp_AR.linear_1.bias": "model-00001-of-00004.safetensors",
|
8 |
+
"mlp_AR.linear_1.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"mlp_AR.linear_2.bias": "model-00001-of-00004.safetensors",
|
10 |
+
"mlp_AR.linear_2.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"mlp_AR.pre_norm.bias": "model-00001-of-00004.safetensors",
|
12 |
+
"mlp_AR.pre_norm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.0.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.0.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.1.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
33 |
+
"model.layers.1.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
34 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
35 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
36 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.10.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.10.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.11.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.11.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.12.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.12.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.15.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.15.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.16.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.16.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
118 |
+
"model.layers.17.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
119 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
120 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
121 |
+
"model.layers.17.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
122 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
123 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
124 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
125 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
126 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
127 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
129 |
+
"model.layers.18.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
130 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.18.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
133 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
134 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
135 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
136 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
137 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
138 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
139 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
140 |
+
"model.layers.19.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
141 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
142 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
143 |
+
"model.layers.19.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
144 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
145 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
146 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
147 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
148 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
149 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
150 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
151 |
+
"model.layers.2.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
152 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
153 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
154 |
+
"model.layers.2.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
155 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
156 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
157 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
158 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
159 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
160 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
161 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
162 |
+
"model.layers.20.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
163 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
164 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"model.layers.20.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.21.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.21.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.22.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.22.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.23.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.23.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.24.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.24.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.25.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.25.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.26.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.26.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.27.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.27.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
243 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
249 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
250 |
+
"model.layers.28.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
251 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
252 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
253 |
+
"model.layers.28.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
254 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
255 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
257 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
258 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
259 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
260 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
261 |
+
"model.layers.29.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
262 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
263 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
264 |
+
"model.layers.29.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
265 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
266 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
267 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
269 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
270 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
271 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"model.layers.3.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
273 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"model.layers.3.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
278 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
279 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
280 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
281 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
282 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
283 |
+
"model.layers.30.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
284 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
285 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
286 |
+
"model.layers.30.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
287 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
288 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
289 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
290 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
291 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
292 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
293 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
294 |
+
"model.layers.31.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
295 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
296 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
297 |
+
"model.layers.31.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
298 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
299 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
300 |
+
"model.layers.32.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
301 |
+
"model.layers.32.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
302 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
303 |
+
"model.layers.32.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
304 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
305 |
+
"model.layers.32.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
|
306 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
307 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
308 |
+
"model.layers.32.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
|
309 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
310 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
311 |
+
"model.layers.33.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
312 |
+
"model.layers.33.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
313 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
314 |
+
"model.layers.33.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
315 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
316 |
+
"model.layers.33.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
|
317 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
318 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
319 |
+
"model.layers.33.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
|
320 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
321 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
322 |
+
"model.layers.34.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
323 |
+
"model.layers.34.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
324 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
325 |
+
"model.layers.34.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
326 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
327 |
+
"model.layers.34.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
|
328 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
329 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
330 |
+
"model.layers.34.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
|
331 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
332 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
333 |
+
"model.layers.35.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
334 |
+
"model.layers.35.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
335 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
336 |
+
"model.layers.35.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
337 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
338 |
+
"model.layers.35.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
|
339 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
340 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
341 |
+
"model.layers.35.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
|
342 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
343 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
344 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
345 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
346 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
347 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
348 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
349 |
+
"model.layers.4.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
350 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
351 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
352 |
+
"model.layers.4.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
353 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
354 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
355 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
356 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
357 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
358 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
359 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
360 |
+
"model.layers.5.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
361 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
362 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
363 |
+
"model.layers.5.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
364 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
365 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
366 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
367 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
368 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
369 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
370 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
371 |
+
"model.layers.6.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
|
372 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
373 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
374 |
+
"model.layers.6.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
|
375 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
376 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
377 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
378 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
379 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
380 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
381 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
382 |
+
"model.layers.7.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
383 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
384 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
385 |
+
"model.layers.7.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
386 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
387 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
388 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
389 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
390 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
391 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
392 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
393 |
+
"model.layers.8.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
394 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
395 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
396 |
+
"model.layers.8.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
397 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
398 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
399 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
400 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
401 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
402 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
403 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
404 |
+
"model.layers.9.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
|
405 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
406 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
407 |
+
"model.layers.9.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
|
408 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
409 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
410 |
+
"model.norm.weight": "model-00004-of-00004.safetensors",
|
411 |
+
"visual.vision_model.embeddings.packing_position_embedding.weight": "model-00001-of-00004.safetensors",
|
412 |
+
"visual.vision_model.embeddings.patch_embedding.bias": "model-00001-of-00004.safetensors",
|
413 |
+
"visual.vision_model.embeddings.patch_embedding.weight": "model-00001-of-00004.safetensors",
|
414 |
+
"visual.vision_model.embeddings.position_embedding.weight": "model-00001-of-00004.safetensors",
|
415 |
+
"visual.vision_model.encoder.layers.0.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
416 |
+
"visual.vision_model.encoder.layers.0.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
417 |
+
"visual.vision_model.encoder.layers.0.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
418 |
+
"visual.vision_model.encoder.layers.0.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
419 |
+
"visual.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
420 |
+
"visual.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
421 |
+
"visual.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
422 |
+
"visual.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
423 |
+
"visual.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
424 |
+
"visual.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
425 |
+
"visual.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
426 |
+
"visual.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
427 |
+
"visual.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
428 |
+
"visual.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
429 |
+
"visual.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
430 |
+
"visual.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
431 |
+
"visual.vision_model.encoder.layers.1.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
432 |
+
"visual.vision_model.encoder.layers.1.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
433 |
+
"visual.vision_model.encoder.layers.1.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
434 |
+
"visual.vision_model.encoder.layers.1.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
435 |
+
"visual.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
436 |
+
"visual.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
437 |
+
"visual.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
438 |
+
"visual.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
439 |
+
"visual.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
440 |
+
"visual.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
441 |
+
"visual.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
442 |
+
"visual.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
443 |
+
"visual.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
444 |
+
"visual.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
445 |
+
"visual.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
446 |
+
"visual.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
447 |
+
"visual.vision_model.encoder.layers.10.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
448 |
+
"visual.vision_model.encoder.layers.10.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
449 |
+
"visual.vision_model.encoder.layers.10.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
450 |
+
"visual.vision_model.encoder.layers.10.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
451 |
+
"visual.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
452 |
+
"visual.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
453 |
+
"visual.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
454 |
+
"visual.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
455 |
+
"visual.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
456 |
+
"visual.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
457 |
+
"visual.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
458 |
+
"visual.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
459 |
+
"visual.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
460 |
+
"visual.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
461 |
+
"visual.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
462 |
+
"visual.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
463 |
+
"visual.vision_model.encoder.layers.11.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
464 |
+
"visual.vision_model.encoder.layers.11.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
465 |
+
"visual.vision_model.encoder.layers.11.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
466 |
+
"visual.vision_model.encoder.layers.11.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
467 |
+
"visual.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
468 |
+
"visual.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
469 |
+
"visual.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
470 |
+
"visual.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
471 |
+
"visual.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
472 |
+
"visual.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
473 |
+
"visual.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
474 |
+
"visual.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
475 |
+
"visual.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
476 |
+
"visual.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
477 |
+
"visual.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
478 |
+
"visual.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
479 |
+
"visual.vision_model.encoder.layers.12.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
480 |
+
"visual.vision_model.encoder.layers.12.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
481 |
+
"visual.vision_model.encoder.layers.12.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
482 |
+
"visual.vision_model.encoder.layers.12.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
483 |
+
"visual.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
484 |
+
"visual.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
485 |
+
"visual.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
486 |
+
"visual.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
487 |
+
"visual.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
488 |
+
"visual.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
489 |
+
"visual.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
490 |
+
"visual.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
491 |
+
"visual.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
492 |
+
"visual.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
493 |
+
"visual.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
494 |
+
"visual.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
495 |
+
"visual.vision_model.encoder.layers.13.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
496 |
+
"visual.vision_model.encoder.layers.13.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
497 |
+
"visual.vision_model.encoder.layers.13.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
498 |
+
"visual.vision_model.encoder.layers.13.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
499 |
+
"visual.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
500 |
+
"visual.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
501 |
+
"visual.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
502 |
+
"visual.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
503 |
+
"visual.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
504 |
+
"visual.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
505 |
+
"visual.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
506 |
+
"visual.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
507 |
+
"visual.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
508 |
+
"visual.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
509 |
+
"visual.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
510 |
+
"visual.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
511 |
+
"visual.vision_model.encoder.layers.14.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
512 |
+
"visual.vision_model.encoder.layers.14.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
513 |
+
"visual.vision_model.encoder.layers.14.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
514 |
+
"visual.vision_model.encoder.layers.14.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
515 |
+
"visual.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
516 |
+
"visual.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
517 |
+
"visual.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
518 |
+
"visual.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
519 |
+
"visual.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
520 |
+
"visual.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
521 |
+
"visual.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
522 |
+
"visual.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
523 |
+
"visual.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
524 |
+
"visual.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
525 |
+
"visual.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
526 |
+
"visual.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
527 |
+
"visual.vision_model.encoder.layers.15.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
528 |
+
"visual.vision_model.encoder.layers.15.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
529 |
+
"visual.vision_model.encoder.layers.15.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
530 |
+
"visual.vision_model.encoder.layers.15.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
531 |
+
"visual.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
532 |
+
"visual.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
533 |
+
"visual.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
534 |
+
"visual.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
535 |
+
"visual.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
536 |
+
"visual.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
537 |
+
"visual.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
538 |
+
"visual.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
539 |
+
"visual.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
540 |
+
"visual.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
541 |
+
"visual.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
542 |
+
"visual.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
543 |
+
"visual.vision_model.encoder.layers.16.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
544 |
+
"visual.vision_model.encoder.layers.16.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
545 |
+
"visual.vision_model.encoder.layers.16.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
546 |
+
"visual.vision_model.encoder.layers.16.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
547 |
+
"visual.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
548 |
+
"visual.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
549 |
+
"visual.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
550 |
+
"visual.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
551 |
+
"visual.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
552 |
+
"visual.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
553 |
+
"visual.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
554 |
+
"visual.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
555 |
+
"visual.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
556 |
+
"visual.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
557 |
+
"visual.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
558 |
+
"visual.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
559 |
+
"visual.vision_model.encoder.layers.17.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
560 |
+
"visual.vision_model.encoder.layers.17.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
561 |
+
"visual.vision_model.encoder.layers.17.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
562 |
+
"visual.vision_model.encoder.layers.17.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
563 |
+
"visual.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
564 |
+
"visual.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
565 |
+
"visual.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
566 |
+
"visual.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
567 |
+
"visual.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
568 |
+
"visual.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
569 |
+
"visual.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
570 |
+
"visual.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
571 |
+
"visual.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
572 |
+
"visual.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
573 |
+
"visual.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
574 |
+
"visual.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
575 |
+
"visual.vision_model.encoder.layers.18.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
576 |
+
"visual.vision_model.encoder.layers.18.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
577 |
+
"visual.vision_model.encoder.layers.18.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
578 |
+
"visual.vision_model.encoder.layers.18.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
579 |
+
"visual.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
580 |
+
"visual.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
581 |
+
"visual.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
582 |
+
"visual.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
583 |
+
"visual.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
584 |
+
"visual.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
585 |
+
"visual.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
586 |
+
"visual.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
587 |
+
"visual.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
588 |
+
"visual.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
589 |
+
"visual.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
590 |
+
"visual.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
591 |
+
"visual.vision_model.encoder.layers.19.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
592 |
+
"visual.vision_model.encoder.layers.19.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
593 |
+
"visual.vision_model.encoder.layers.19.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
594 |
+
"visual.vision_model.encoder.layers.19.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
595 |
+
"visual.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
596 |
+
"visual.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
597 |
+
"visual.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
598 |
+
"visual.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
599 |
+
"visual.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
600 |
+
"visual.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
601 |
+
"visual.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
602 |
+
"visual.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
603 |
+
"visual.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
604 |
+
"visual.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
605 |
+
"visual.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
606 |
+
"visual.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
607 |
+
"visual.vision_model.encoder.layers.2.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
608 |
+
"visual.vision_model.encoder.layers.2.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
609 |
+
"visual.vision_model.encoder.layers.2.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
610 |
+
"visual.vision_model.encoder.layers.2.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
611 |
+
"visual.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
612 |
+
"visual.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
613 |
+
"visual.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
614 |
+
"visual.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
615 |
+
"visual.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
616 |
+
"visual.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
617 |
+
"visual.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
618 |
+
"visual.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
619 |
+
"visual.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
620 |
+
"visual.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
621 |
+
"visual.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
622 |
+
"visual.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
623 |
+
"visual.vision_model.encoder.layers.20.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
624 |
+
"visual.vision_model.encoder.layers.20.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
625 |
+
"visual.vision_model.encoder.layers.20.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
626 |
+
"visual.vision_model.encoder.layers.20.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
627 |
+
"visual.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
628 |
+
"visual.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
629 |
+
"visual.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
630 |
+
"visual.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
631 |
+
"visual.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
632 |
+
"visual.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
633 |
+
"visual.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
634 |
+
"visual.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
635 |
+
"visual.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
636 |
+
"visual.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
637 |
+
"visual.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
638 |
+
"visual.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
639 |
+
"visual.vision_model.encoder.layers.21.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
640 |
+
"visual.vision_model.encoder.layers.21.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
641 |
+
"visual.vision_model.encoder.layers.21.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
642 |
+
"visual.vision_model.encoder.layers.21.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
643 |
+
"visual.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
644 |
+
"visual.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
645 |
+
"visual.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
646 |
+
"visual.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
647 |
+
"visual.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
648 |
+
"visual.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
649 |
+
"visual.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
650 |
+
"visual.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
651 |
+
"visual.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
652 |
+
"visual.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
653 |
+
"visual.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
654 |
+
"visual.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
655 |
+
"visual.vision_model.encoder.layers.22.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
656 |
+
"visual.vision_model.encoder.layers.22.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
657 |
+
"visual.vision_model.encoder.layers.22.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
658 |
+
"visual.vision_model.encoder.layers.22.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
659 |
+
"visual.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
660 |
+
"visual.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
661 |
+
"visual.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
662 |
+
"visual.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
663 |
+
"visual.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
664 |
+
"visual.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
665 |
+
"visual.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
666 |
+
"visual.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
667 |
+
"visual.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
668 |
+
"visual.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
669 |
+
"visual.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
670 |
+
"visual.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
671 |
+
"visual.vision_model.encoder.layers.23.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
672 |
+
"visual.vision_model.encoder.layers.23.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
673 |
+
"visual.vision_model.encoder.layers.23.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
674 |
+
"visual.vision_model.encoder.layers.23.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
675 |
+
"visual.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
676 |
+
"visual.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
677 |
+
"visual.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
678 |
+
"visual.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
679 |
+
"visual.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
680 |
+
"visual.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
681 |
+
"visual.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
682 |
+
"visual.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
683 |
+
"visual.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
684 |
+
"visual.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
685 |
+
"visual.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
686 |
+
"visual.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
687 |
+
"visual.vision_model.encoder.layers.24.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
688 |
+
"visual.vision_model.encoder.layers.24.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
689 |
+
"visual.vision_model.encoder.layers.24.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
690 |
+
"visual.vision_model.encoder.layers.24.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
691 |
+
"visual.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
692 |
+
"visual.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
693 |
+
"visual.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
694 |
+
"visual.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
695 |
+
"visual.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
696 |
+
"visual.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
697 |
+
"visual.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
698 |
+
"visual.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
699 |
+
"visual.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
700 |
+
"visual.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
701 |
+
"visual.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
702 |
+
"visual.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
703 |
+
"visual.vision_model.encoder.layers.25.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
704 |
+
"visual.vision_model.encoder.layers.25.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
705 |
+
"visual.vision_model.encoder.layers.25.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
706 |
+
"visual.vision_model.encoder.layers.25.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
707 |
+
"visual.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
708 |
+
"visual.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
709 |
+
"visual.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
710 |
+
"visual.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
711 |
+
"visual.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
712 |
+
"visual.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
713 |
+
"visual.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
714 |
+
"visual.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
715 |
+
"visual.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
716 |
+
"visual.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
717 |
+
"visual.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
718 |
+
"visual.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
719 |
+
"visual.vision_model.encoder.layers.26.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
720 |
+
"visual.vision_model.encoder.layers.26.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
721 |
+
"visual.vision_model.encoder.layers.26.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
722 |
+
"visual.vision_model.encoder.layers.26.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
723 |
+
"visual.vision_model.encoder.layers.26.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
724 |
+
"visual.vision_model.encoder.layers.26.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
725 |
+
"visual.vision_model.encoder.layers.26.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
726 |
+
"visual.vision_model.encoder.layers.26.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
727 |
+
"visual.vision_model.encoder.layers.26.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
728 |
+
"visual.vision_model.encoder.layers.26.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
729 |
+
"visual.vision_model.encoder.layers.26.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
730 |
+
"visual.vision_model.encoder.layers.26.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
731 |
+
"visual.vision_model.encoder.layers.26.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
732 |
+
"visual.vision_model.encoder.layers.26.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
733 |
+
"visual.vision_model.encoder.layers.26.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
734 |
+
"visual.vision_model.encoder.layers.26.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
735 |
+
"visual.vision_model.encoder.layers.3.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
736 |
+
"visual.vision_model.encoder.layers.3.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
737 |
+
"visual.vision_model.encoder.layers.3.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
738 |
+
"visual.vision_model.encoder.layers.3.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
739 |
+
"visual.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
740 |
+
"visual.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
741 |
+
"visual.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
742 |
+
"visual.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
743 |
+
"visual.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
744 |
+
"visual.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
745 |
+
"visual.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
746 |
+
"visual.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
747 |
+
"visual.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
748 |
+
"visual.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
749 |
+
"visual.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
750 |
+
"visual.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
751 |
+
"visual.vision_model.encoder.layers.4.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
752 |
+
"visual.vision_model.encoder.layers.4.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
753 |
+
"visual.vision_model.encoder.layers.4.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
754 |
+
"visual.vision_model.encoder.layers.4.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
755 |
+
"visual.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
756 |
+
"visual.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
757 |
+
"visual.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
758 |
+
"visual.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
759 |
+
"visual.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
760 |
+
"visual.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
761 |
+
"visual.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
762 |
+
"visual.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
763 |
+
"visual.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
764 |
+
"visual.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
765 |
+
"visual.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
766 |
+
"visual.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
767 |
+
"visual.vision_model.encoder.layers.5.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
768 |
+
"visual.vision_model.encoder.layers.5.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
769 |
+
"visual.vision_model.encoder.layers.5.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
770 |
+
"visual.vision_model.encoder.layers.5.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
771 |
+
"visual.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
772 |
+
"visual.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
773 |
+
"visual.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
774 |
+
"visual.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
775 |
+
"visual.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
776 |
+
"visual.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
777 |
+
"visual.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
778 |
+
"visual.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
779 |
+
"visual.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
780 |
+
"visual.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
781 |
+
"visual.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
782 |
+
"visual.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
783 |
+
"visual.vision_model.encoder.layers.6.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
784 |
+
"visual.vision_model.encoder.layers.6.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
785 |
+
"visual.vision_model.encoder.layers.6.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
786 |
+
"visual.vision_model.encoder.layers.6.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
787 |
+
"visual.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
788 |
+
"visual.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
789 |
+
"visual.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
790 |
+
"visual.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
791 |
+
"visual.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
792 |
+
"visual.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
793 |
+
"visual.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
794 |
+
"visual.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
795 |
+
"visual.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
796 |
+
"visual.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
797 |
+
"visual.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
798 |
+
"visual.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
799 |
+
"visual.vision_model.encoder.layers.7.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
800 |
+
"visual.vision_model.encoder.layers.7.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
801 |
+
"visual.vision_model.encoder.layers.7.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
802 |
+
"visual.vision_model.encoder.layers.7.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
803 |
+
"visual.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
804 |
+
"visual.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
805 |
+
"visual.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
806 |
+
"visual.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
807 |
+
"visual.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
808 |
+
"visual.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
809 |
+
"visual.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
810 |
+
"visual.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
811 |
+
"visual.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
812 |
+
"visual.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
813 |
+
"visual.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
814 |
+
"visual.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
815 |
+
"visual.vision_model.encoder.layers.8.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
816 |
+
"visual.vision_model.encoder.layers.8.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
817 |
+
"visual.vision_model.encoder.layers.8.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
818 |
+
"visual.vision_model.encoder.layers.8.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
819 |
+
"visual.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
820 |
+
"visual.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
821 |
+
"visual.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
822 |
+
"visual.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
823 |
+
"visual.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
824 |
+
"visual.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
825 |
+
"visual.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
826 |
+
"visual.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
827 |
+
"visual.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
828 |
+
"visual.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
829 |
+
"visual.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
830 |
+
"visual.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
831 |
+
"visual.vision_model.encoder.layers.9.layer_norm1.bias": "model-00001-of-00004.safetensors",
|
832 |
+
"visual.vision_model.encoder.layers.9.layer_norm1.weight": "model-00001-of-00004.safetensors",
|
833 |
+
"visual.vision_model.encoder.layers.9.layer_norm2.bias": "model-00001-of-00004.safetensors",
|
834 |
+
"visual.vision_model.encoder.layers.9.layer_norm2.weight": "model-00001-of-00004.safetensors",
|
835 |
+
"visual.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
836 |
+
"visual.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
837 |
+
"visual.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
838 |
+
"visual.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
839 |
+
"visual.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
840 |
+
"visual.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
841 |
+
"visual.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
|
842 |
+
"visual.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
|
843 |
+
"visual.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
844 |
+
"visual.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
845 |
+
"visual.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
846 |
+
"visual.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
847 |
+
"visual.vision_model.head.attention.in_proj_bias": "model-00001-of-00004.safetensors",
|
848 |
+
"visual.vision_model.head.attention.in_proj_weight": "model-00001-of-00004.safetensors",
|
849 |
+
"visual.vision_model.head.attention.out_proj.bias": "model-00001-of-00004.safetensors",
|
850 |
+
"visual.vision_model.head.attention.out_proj.weight": "model-00001-of-00004.safetensors",
|
851 |
+
"visual.vision_model.head.layernorm.bias": "model-00001-of-00004.safetensors",
|
852 |
+
"visual.vision_model.head.layernorm.weight": "model-00001-of-00004.safetensors",
|
853 |
+
"visual.vision_model.head.mlp.fc1.bias": "model-00001-of-00004.safetensors",
|
854 |
+
"visual.vision_model.head.mlp.fc1.weight": "model-00001-of-00004.safetensors",
|
855 |
+
"visual.vision_model.head.mlp.fc2.bias": "model-00001-of-00004.safetensors",
|
856 |
+
"visual.vision_model.head.mlp.fc2.weight": "model-00001-of-00004.safetensors",
|
857 |
+
"visual.vision_model.head.probe": "model-00001-of-00004.safetensors",
|
858 |
+
"visual.vision_model.post_layernorm.bias": "model-00001-of-00004.safetensors",
|
859 |
+
"visual.vision_model.post_layernorm.weight": "model-00001-of-00004.safetensors"
|
860 |
+
}
|
861 |
+
}
|
modeling_keye_vl_1_5.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
preprocessor_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"min_pixels": 3136,
|
3 |
+
"max_pixels": 16056320,
|
4 |
+
"patch_size": 14,
|
5 |
+
"temporal_patch_size": 1,
|
6 |
+
"merge_size": 2,
|
7 |
+
"image_mean": [
|
8 |
+
0.5,0.5,0.5
|
9 |
+
],
|
10 |
+
"image_std": [
|
11 |
+
0.5,0.5,0.5
|
12 |
+
],
|
13 |
+
"processor_class": "KeyeVL1_5Processor",
|
14 |
+
"auto_map": {
|
15 |
+
"AutoProcessor": "processing_keye_vl_1_5.KeyeVL1_5Processor",
|
16 |
+
"AutoImageProcessor": "image_processing_keye_vl_1_5.KeyeVL1_5ImageProcessor"
|
17 |
+
},
|
18 |
+
"size":{
|
19 |
+
"height": 384,
|
20 |
+
"width": 384
|
21 |
+
}
|
22 |
+
}
|
processing_keye_vl_1_5.py
ADDED
@@ -0,0 +1,421 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025 The Keye Team and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
from typing import List, Union, Optional
|
21 |
+
|
22 |
+
from transformers.feature_extraction_utils import BatchFeature
|
23 |
+
from transformers.image_utils import ImageInput
|
24 |
+
from transformers.video_utils import VideoInput
|
25 |
+
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, VideosKwargs
|
26 |
+
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
|
27 |
+
from .image_processing_keye_vl_1_5 import KeyeVL1_5ImageProcessor
|
28 |
+
import torch
|
29 |
+
import torch.nn as nn
|
30 |
+
import numpy as np
|
31 |
+
from itertools import chain
|
32 |
+
|
33 |
+
class KeyeVL1_5VideosProcessorKwargs(VideosKwargs, total=False):
|
34 |
+
fps: Optional[Union[List[float], float]]
|
35 |
+
# 准备reszie到的width(slow)
|
36 |
+
width: Optional[Union[List[int], int]]
|
37 |
+
# 准备reszie到的height(slow)
|
38 |
+
height: Optional[Union[List[int], int]]
|
39 |
+
# 准备resize到的width(fast)
|
40 |
+
fast_width: Optional[Union[List[int], int]]
|
41 |
+
# 准备resize到的height(fast)
|
42 |
+
fast_height: Optional[Union[List[int], int]]
|
43 |
+
# 用于标记每一帧的时间戳,数量和帧数相等
|
44 |
+
timestamps: Optional[Union[List[torch.Tensor], torch.Tensor]]
|
45 |
+
# 用于标记每一帧的类型是slow还是fast,slow=0, fast=1
|
46 |
+
frame_types: Optional[Union[List[torch.Tensor], torch.Tensor]]
|
47 |
+
|
48 |
+
|
49 |
+
class KeyeVL1_5ProcessorKwargs(ProcessingKwargs, total=False):
|
50 |
+
videos_kwargs: KeyeVL1_5VideosProcessorKwargs
|
51 |
+
_defaults = {
|
52 |
+
"text_kwargs": {
|
53 |
+
"padding": False,
|
54 |
+
},
|
55 |
+
"videos_kwargs": {"fps": 2.0},
|
56 |
+
}
|
57 |
+
|
58 |
+
def select_slow_fast_frames(frames: torch.Tensor, frame_types: torch.Tensor):
|
59 |
+
"""
|
60 |
+
Selects frames from a tensor based on a mask list.
|
61 |
+
|
62 |
+
Args:
|
63 |
+
frames (torch.Tensor): A tensor of shape (nframes, c, h, w).
|
64 |
+
frame_types (torch.Tensor): A int tensor of shape (nframes,)
|
65 |
+
|
66 |
+
Returns:
|
67 |
+
tuple[torch.Tensor, torch.Tensor]: A tuple containing two tensors:
|
68 |
+
- slow_frames: Frames which the type is 0.
|
69 |
+
- fast_frames: Frames where the type is 1.
|
70 |
+
"""
|
71 |
+
nframes, _, _, _ = frames.shape
|
72 |
+
if frame_types.shape[-1] != nframes:
|
73 |
+
raise ValueError("Length of mask must be equal to the number of frames.")
|
74 |
+
|
75 |
+
mask = (frame_types == 0)
|
76 |
+
|
77 |
+
slow_frames = frames[mask]
|
78 |
+
fast_frames = frames[~mask]
|
79 |
+
|
80 |
+
return slow_frames, fast_frames
|
81 |
+
|
82 |
+
def split_thw(tensor):
|
83 |
+
"""Split grid_thw in t dimension, the result tensor should like [[1, h, w],...]"""
|
84 |
+
repeats = tensor[:, 0]
|
85 |
+
new_thw = torch.cat([
|
86 |
+
torch.ones(tensor.shape[0], 1, dtype=tensor.dtype,
|
87 |
+
device=tensor.device),
|
88 |
+
tensor[:, 1:]
|
89 |
+
], dim=1)
|
90 |
+
return torch.repeat_interleave(new_thw, repeats, dim=0)
|
91 |
+
|
92 |
+
def merge_hws(hws):
|
93 |
+
"""
|
94 |
+
优化版本:使用更高效的方法合并张量
|
95 |
+
"""
|
96 |
+
merged = []
|
97 |
+
last_hw = [-1, -1]
|
98 |
+
|
99 |
+
for hw in hws:
|
100 |
+
# 找到连续相同形状的张量
|
101 |
+
if hw[1:] == last_hw:
|
102 |
+
merged[-1][0] += 1
|
103 |
+
else:
|
104 |
+
merged.append(hw)
|
105 |
+
last_hw = hw[1:]
|
106 |
+
|
107 |
+
return torch.tensor(merged)
|
108 |
+
|
109 |
+
class KeyeVL1_5Processor(ProcessorMixin):
|
110 |
+
r"""
|
111 |
+
[`KeyeVL1_5Processor`] offers all the functionalities of [`KeyeVL1_5ImageProcessor`] and [`Qwen2TokenizerFast`]. See the
|
112 |
+
[`~KeyeVL1_5Processor.__call__`] and [`~KeyeVL1_5Processor.decode`] for more information.
|
113 |
+
Args:
|
114 |
+
image_processor ([`KeyeVL1_5ImageProcessor`], *optional*):
|
115 |
+
The image processor is a required input.
|
116 |
+
tokenizer ([`Qwen2TokenizerFast`], *optional*):
|
117 |
+
The tokenizer is a required input.
|
118 |
+
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
|
119 |
+
in a chat into a tokenizable string.
|
120 |
+
"""
|
121 |
+
|
122 |
+
attributes = ["image_processor", "tokenizer"]
|
123 |
+
valid_kwargs = [
|
124 |
+
"chat_template","image_std", "min_pixels", "image_mean", "merge_size", "image_processor_type",
|
125 |
+
"temporal_patch_size", "patch_size", "max_pixels"
|
126 |
+
]
|
127 |
+
|
128 |
+
image_processor_class = "AutoImageProcessor"
|
129 |
+
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
|
130 |
+
|
131 |
+
def __init__(self, image_processor=None, tokenizer=None, chat_template=None, **kwargs):
|
132 |
+
self.image_token = "<|image_pad|>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token
|
133 |
+
self.video_token = "<|video_pad|>" if not hasattr(tokenizer, "video_token") else tokenizer.video_token
|
134 |
+
self.frame_token = "<|frame|>" if not hasattr(tokenizer, "frame_token") else tokenizer.frame_token
|
135 |
+
self.fast_video_token = "<|fast_video_pad|>" if not hasattr(tokenizer, "fast_video_token") else tokenizer.fast_video_token
|
136 |
+
self.fast_start = "<|fast_start|>" if not hasattr(tokenizer, "fast_start") else tokenizer.fast_start
|
137 |
+
self.fast_end = "<|fast_end|>" if not hasattr(tokenizer, "fast_end") else tokenizer.fast_end
|
138 |
+
super().__init__(image_processor, tokenizer, chat_template=chat_template)
|
139 |
+
|
140 |
+
self.slowfast = True
|
141 |
+
|
142 |
+
def __call__(
|
143 |
+
self,
|
144 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
145 |
+
images: ImageInput = None,
|
146 |
+
videos: VideoInput = None,
|
147 |
+
**kwargs: Unpack[KeyeVL1_5ProcessorKwargs],
|
148 |
+
) -> BatchFeature:
|
149 |
+
"""
|
150 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
151 |
+
and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode
|
152 |
+
the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
|
153 |
+
KeyeVL1_5ImageProcessor's [`~KeyeVL1_5ImageProcessor.__call__`] if `vision_infos` is not `None`.
|
154 |
+
|
155 |
+
Args:
|
156 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
157 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
158 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
159 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
160 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
161 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
162 |
+
tensor. Both channels-first and channels-last formats are supported.
|
163 |
+
videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
164 |
+
The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
|
165 |
+
tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported.
|
166 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
167 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
168 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
169 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
170 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
171 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
172 |
+
|
173 |
+
Returns:
|
174 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
175 |
+
|
176 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
177 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
178 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
179 |
+
`None`).
|
180 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
181 |
+
- **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`.
|
182 |
+
- **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
|
183 |
+
- **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`.
|
184 |
+
- **second_per_grid_ts** -- List of video seconds per time grid. Returned when `videos` is not `None`.
|
185 |
+
"""
|
186 |
+
output_kwargs = self._merge_kwargs(
|
187 |
+
KeyeVL1_5ProcessorKwargs,
|
188 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
189 |
+
**kwargs,
|
190 |
+
)
|
191 |
+
|
192 |
+
if images is not None:
|
193 |
+
# slow_images = images
|
194 |
+
image_inputs = self.image_processor(images=images, return_tensors="pt")
|
195 |
+
image_inputs['pixel_values'] = image_inputs['pixel_values']
|
196 |
+
image_grid_thw = image_inputs["image_grid_thw"]
|
197 |
+
else:
|
198 |
+
image_inputs = {}
|
199 |
+
image_grid_thw = None
|
200 |
+
|
201 |
+
num_frames = []
|
202 |
+
if videos is not None:
|
203 |
+
batch_slow_frames = []
|
204 |
+
batch_fast_frames = []
|
205 |
+
|
206 |
+
videos_kwargs = output_kwargs["videos_kwargs"]
|
207 |
+
num_videos = len(videos)
|
208 |
+
batch_frame_types = videos_kwargs.get("frame_types", [None] * num_videos)
|
209 |
+
batch_timestamps = videos_kwargs.get("timestamps", [None] * num_videos)
|
210 |
+
batch_width = videos_kwargs.get("width", [None] * num_videos)
|
211 |
+
batch_height = videos_kwargs.get("height", [None] * num_videos)
|
212 |
+
batch_fast_width = videos_kwargs.get("fast_width", [None] * num_videos)
|
213 |
+
batch_fast_height = videos_kwargs.get("fast_height", [None] * num_videos)
|
214 |
+
|
215 |
+
for index, frames in enumerate(videos):
|
216 |
+
if isinstance(frames, np.ndarray):
|
217 |
+
frames = torch.from_numpy(frames)
|
218 |
+
nframes = frames.shape[0]
|
219 |
+
num_frames.append(nframes)
|
220 |
+
assert nframes > 0, "No frames in video"
|
221 |
+
if batch_frame_types[index] is None:
|
222 |
+
# default to all slow frames
|
223 |
+
batch_frame_types[index] = torch.zeros((nframes, ), dtype=torch.long)
|
224 |
+
frame_types = batch_frame_types[index]
|
225 |
+
slow_frames, fast_frames = select_slow_fast_frames(frames, frame_types)
|
226 |
+
has_fast_frames = fast_frames.shape[0] > 0
|
227 |
+
# resize slow frames
|
228 |
+
resized_width = batch_width[index]
|
229 |
+
resized_height = batch_height[index]
|
230 |
+
if resized_width is not None and resized_height is not None:
|
231 |
+
slow_frames = nn.functional.interpolate(
|
232 |
+
slow_frames,
|
233 |
+
[resized_height, resized_width],
|
234 |
+
mode="bilinear",
|
235 |
+
antialias=True,
|
236 |
+
).float()
|
237 |
+
# Tensor(N, C, H, W) -> Tuple[Tensor(1, C, H, W)]
|
238 |
+
# slow_frames = list(slow_frames.split(1, dim=0)),不split,在模型里面做
|
239 |
+
slow_video_inputs = self.image_processor(
|
240 |
+
images=None, videos=[slow_frames], **output_kwargs["images_kwargs"], do_resize=False)
|
241 |
+
slow_video_grid_thw = slow_video_inputs["video_grid_thw"]
|
242 |
+
batch_slow_frames.append(slow_video_inputs)
|
243 |
+
# # 当前这个视频每一帧的token数
|
244 |
+
# slow_frames_patch_nums[index] = int(slow_video_inputs["pixel_values_videos"].shape[0] / \
|
245 |
+
# slow_video_grid_thw.squeeze()[0])
|
246 |
+
|
247 |
+
if has_fast_frames:
|
248 |
+
# TODO: shrink fast_frames
|
249 |
+
fast_resized_width = batch_fast_width[index]
|
250 |
+
fast_resized_height = batch_fast_height[index]
|
251 |
+
if fast_resized_width is not None and fast_resized_height is not None:
|
252 |
+
fast_frames = nn.functional.interpolate(
|
253 |
+
fast_frames,
|
254 |
+
[fast_resized_height, fast_resized_width],
|
255 |
+
mode="bilinear",
|
256 |
+
antialias=True,
|
257 |
+
).float()
|
258 |
+
# Tensor(N, C, H, W) -> Tuple[Tensor(1, C, H, W)]
|
259 |
+
# fast_frames = list(fast_frames.split(1, dim=0))
|
260 |
+
fast_video_inputs = self.image_processor(
|
261 |
+
images=None, videos=[fast_frames], **output_kwargs["images_kwargs"], do_resize=False)
|
262 |
+
fast_video_grid_thw = fast_video_inputs["video_grid_thw"]
|
263 |
+
batch_fast_frames.append(fast_video_inputs)
|
264 |
+
# # 当前这个视频的所有token数
|
265 |
+
# fast_frames_token_nums[index] = int(fast_video_inputs["pixel_values_videos"].shape[0] / \
|
266 |
+
# fast_video_grid_thw.squeeze()[0])
|
267 |
+
|
268 |
+
assert len(batch_slow_frames) > 0, "Slow frames should not be empty."
|
269 |
+
slow_pixel_values_videos_list = [
|
270 |
+
video["pixel_values_videos"] for video in batch_slow_frames if video is not None]
|
271 |
+
slow_video_grid_thw_list = [
|
272 |
+
video["video_grid_thw"] for video in batch_slow_frames if video is not None]
|
273 |
+
|
274 |
+
slow_pixel_values_videos = torch.concat(slow_pixel_values_videos_list, dim=0)
|
275 |
+
slow_video_grid_thw = torch.concat(slow_video_grid_thw_list, dim=0)
|
276 |
+
|
277 |
+
if has_fast_frames:
|
278 |
+
fast_pixel_values_videos_list = [
|
279 |
+
video["pixel_values_videos"] for video in batch_fast_frames \
|
280 |
+
if video is not None]
|
281 |
+
fast_video_grid_thw_list = [
|
282 |
+
video["video_grid_thw"] for video in batch_fast_frames \
|
283 |
+
if video is not None]
|
284 |
+
|
285 |
+
fast_pixel_values_videos = \
|
286 |
+
torch.concat(fast_pixel_values_videos_list, dim=0)
|
287 |
+
fast_video_grid_thw = \
|
288 |
+
torch.concat(fast_video_grid_thw_list, dim=0)
|
289 |
+
else:
|
290 |
+
fast_video_grid_thw = None
|
291 |
+
else:
|
292 |
+
slow_video_grid_thw = None
|
293 |
+
fast_video_grid_thw = None
|
294 |
+
|
295 |
+
if not isinstance(text, list):
|
296 |
+
text = [text]
|
297 |
+
if image_grid_thw is not None:
|
298 |
+
index = 0
|
299 |
+
for i in range(len(text)):
|
300 |
+
while self.image_token in text[i]:
|
301 |
+
image_place_holder_tempale = "<|placeholder|>" * (
|
302 |
+
image_grid_thw[index].prod() // self.image_processor.merge_size ** 2)
|
303 |
+
text[i] = text[i].replace(
|
304 |
+
self.image_token,
|
305 |
+
image_place_holder_tempale,
|
306 |
+
1,
|
307 |
+
)
|
308 |
+
index += 1
|
309 |
+
text[i] = text[i].replace("<|placeholder|>", self.image_token)
|
310 |
+
|
311 |
+
pixel_values_videos = []
|
312 |
+
video_grid_thw = []
|
313 |
+
videos_inputs = {}
|
314 |
+
if slow_video_grid_thw is not None:
|
315 |
+
slow_video_grid_thw = split_thw(slow_video_grid_thw)
|
316 |
+
if fast_video_grid_thw is not None:
|
317 |
+
fast_video_grid_thw = split_thw(fast_video_grid_thw)
|
318 |
+
index = 0
|
319 |
+
slow_index = 0
|
320 |
+
fast_index = 0
|
321 |
+
slow_pixels_index = 0
|
322 |
+
fast_pixels_index = 0
|
323 |
+
for i in range(len(text)):
|
324 |
+
while self.video_token in text[i]:
|
325 |
+
video_place_holder_tempale = ""
|
326 |
+
|
327 |
+
for j in range(batch_frame_types[index].shape[-1]):
|
328 |
+
if batch_timestamps[index] is not None: # 如果有时间戳
|
329 |
+
video_place_holder_tempale += self.frame_token + format(batch_timestamps[index][j], ".1f")
|
330 |
+
else:
|
331 |
+
video_place_holder_tempale += self.frame_token
|
332 |
+
|
333 |
+
# 当前帧是slow
|
334 |
+
if batch_frame_types[index][j] == 0:
|
335 |
+
num_patches = int(slow_video_grid_thw[slow_index].prod())
|
336 |
+
video_place_holder_tempale += "<|placeholder|>" * (
|
337 |
+
num_patches // self.image_processor.merge_size ** 2)
|
338 |
+
pixel_values_videos.append(
|
339 |
+
slow_pixel_values_videos[slow_pixels_index:slow_pixels_index + num_patches])
|
340 |
+
slow_pixels_index = slow_pixels_index + num_patches
|
341 |
+
video_grid_thw.append(slow_video_grid_thw[slow_index].tolist())
|
342 |
+
slow_index += 1
|
343 |
+
|
344 |
+
# 当前帧是fast
|
345 |
+
elif batch_frame_types[index][j] == 1:
|
346 |
+
num_patches = int(fast_video_grid_thw[fast_index].prod())
|
347 |
+
video_place_holder_tempale += self.fast_start + "<|placeholder|>" * (
|
348 |
+
num_patches // self.image_processor.merge_size ** 2) + \
|
349 |
+
self.fast_end
|
350 |
+
pixel_values_videos.append(
|
351 |
+
fast_pixel_values_videos[fast_pixels_index:fast_pixels_index + num_patches])
|
352 |
+
fast_pixels_index = fast_pixels_index + num_patches
|
353 |
+
video_grid_thw.append(fast_video_grid_thw[fast_index].tolist())
|
354 |
+
fast_index += 1
|
355 |
+
text[i] = text[i].replace(
|
356 |
+
self.video_token,
|
357 |
+
video_place_holder_tempale,
|
358 |
+
1,
|
359 |
+
)
|
360 |
+
index += 1
|
361 |
+
text[i] = text[i].replace("<|placeholder|>", self.video_token)
|
362 |
+
|
363 |
+
videos_inputs["pixel_values_videos"] = torch.cat(pixel_values_videos, dim=0)
|
364 |
+
videos_inputs["video_grid_thw"] = merge_hws(video_grid_thw)
|
365 |
+
videos_inputs["num_frames"] = torch.tensor(num_frames)
|
366 |
+
|
367 |
+
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
|
368 |
+
|
369 |
+
return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs})
|
370 |
+
|
371 |
+
def batch_decode(self, *args, **kwargs):
|
372 |
+
"""
|
373 |
+
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
374 |
+
refer to the docstring of this method for more information.
|
375 |
+
"""
|
376 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
377 |
+
|
378 |
+
def decode(self, *args, **kwargs):
|
379 |
+
"""
|
380 |
+
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
381 |
+
the docstring of this method for more information.
|
382 |
+
"""
|
383 |
+
return self.tokenizer.decode(*args, **kwargs)
|
384 |
+
|
385 |
+
def post_process_image_text_to_text(
|
386 |
+
self, generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False, **kwargs
|
387 |
+
):
|
388 |
+
"""
|
389 |
+
Post-process the output of the model to decode the text.
|
390 |
+
|
391 |
+
Args:
|
392 |
+
generated_outputs (`torch.Tensor` or `np.ndarray`):
|
393 |
+
The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
|
394 |
+
or `(sequence_length,)`.
|
395 |
+
skip_special_tokens (`bool`, *optional*, defaults to `True`):
|
396 |
+
Whether or not to remove special tokens in the output. Argument passed to the tokenizer's `batch_decode` method.
|
397 |
+
Clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
|
398 |
+
Whether or not to clean up the tokenization spaces. Argument passed to the tokenizer's `batch_decode` method.
|
399 |
+
**kwargs:
|
400 |
+
Additional arguments to be passed to the tokenizer's `batch_decode method`.
|
401 |
+
|
402 |
+
Returns:
|
403 |
+
`List[str]`: The decoded text.
|
404 |
+
"""
|
405 |
+
return self.tokenizer.batch_decode(
|
406 |
+
generated_outputs,
|
407 |
+
skip_special_tokens=skip_special_tokens,
|
408 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
409 |
+
**kwargs,
|
410 |
+
)
|
411 |
+
|
412 |
+
@property
|
413 |
+
def model_input_names(self):
|
414 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
415 |
+
image_processor_input_names = self.image_processor.model_input_names
|
416 |
+
names_from_processor = list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
417 |
+
return names_from_processor
|
418 |
+
|
419 |
+
|
420 |
+
|
421 |
+
__all__ = ["KeyeVL1_5Processor"]
|
processor_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoProcessor": "processing_keye_vl_1_5.KeyeVL1_5Processor"
|
4 |
+
},
|
5 |
+
"processor_class": "KeyeVL1_5Processor"
|
6 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|vision_start|>",
|
6 |
+
"<|vision_end|>",
|
7 |
+
"<|vision_pad|>",
|
8 |
+
"<|image_pad|>",
|
9 |
+
"<|video_pad|>"
|
10 |
+
],
|
11 |
+
"eos_token": {
|
12 |
+
"content": "<|im_end|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false
|
17 |
+
},
|
18 |
+
"pad_token": {
|
19 |
+
"content": "<|endoftext|>",
|
20 |
+
"lstrip": false,
|
21 |
+
"normalized": false,
|
22 |
+
"rstrip": false,
|
23 |
+
"single_word": false
|
24 |
+
}
|
25 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ceaf87113caa06d8b2e2f6966ab11d12ac590cb887b64c591cae70ea89245f4
|
3 |
+
size 11422655
|
tokenizer_config.json
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": false
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": false
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": false
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": false
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": false
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": false
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<tool_response>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"151666": {
|
190 |
+
"content": "</tool_response>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"151667": {
|
198 |
+
"content": "<think>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"151668": {
|
206 |
+
"content": "</think>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
},
|
213 |
+
"151669": {
|
214 |
+
"content": "<|point_start|>",
|
215 |
+
"lstrip": false,
|
216 |
+
"normalized": false,
|
217 |
+
"rstrip": false,
|
218 |
+
"single_word": false,
|
219 |
+
"special": false
|
220 |
+
},
|
221 |
+
"151670": {
|
222 |
+
"content": "<|point_end|>",
|
223 |
+
"lstrip": false,
|
224 |
+
"normalized": false,
|
225 |
+
"rstrip": false,
|
226 |
+
"single_word": false,
|
227 |
+
"special": false
|
228 |
+
},
|
229 |
+
"151671": {
|
230 |
+
"content": "<|ocr_text_start|>",
|
231 |
+
"lstrip": false,
|
232 |
+
"normalized": false,
|
233 |
+
"rstrip": false,
|
234 |
+
"single_word": false,
|
235 |
+
"special": false
|
236 |
+
},
|
237 |
+
"151672": {
|
238 |
+
"content": "<|ocr_text_end|>",
|
239 |
+
"lstrip": false,
|
240 |
+
"normalized": false,
|
241 |
+
"rstrip": false,
|
242 |
+
"single_word": false,
|
243 |
+
"special": false
|
244 |
+
},
|
245 |
+
"151673": {
|
246 |
+
"content": "<|clip_time_start|>",
|
247 |
+
"lstrip": false,
|
248 |
+
"normalized": false,
|
249 |
+
"rstrip": false,
|
250 |
+
"single_word": false,
|
251 |
+
"special": false
|
252 |
+
},
|
253 |
+
"151674": {
|
254 |
+
"content": "<|clip_time_end|>",
|
255 |
+
"lstrip": false,
|
256 |
+
"normalized": false,
|
257 |
+
"rstrip": false,
|
258 |
+
"single_word": false,
|
259 |
+
"special": false
|
260 |
+
},
|
261 |
+
"151675": {
|
262 |
+
"content": "<|polygon_start|>",
|
263 |
+
"lstrip": false,
|
264 |
+
"normalized": false,
|
265 |
+
"rstrip": false,
|
266 |
+
"single_word": false,
|
267 |
+
"special": false
|
268 |
+
},
|
269 |
+
"151676": {
|
270 |
+
"content": "<|polygon_end|>",
|
271 |
+
"lstrip": false,
|
272 |
+
"normalized": false,
|
273 |
+
"rstrip": false,
|
274 |
+
"single_word": false,
|
275 |
+
"special": false
|
276 |
+
},
|
277 |
+
"151677": {
|
278 |
+
"content": "<|frame|>",
|
279 |
+
"lstrip": false,
|
280 |
+
"normalized": false,
|
281 |
+
"rstrip": false,
|
282 |
+
"single_word": false,
|
283 |
+
"special": false
|
284 |
+
},
|
285 |
+
"151678": {
|
286 |
+
"content": "<|fast_video_pad|>",
|
287 |
+
"lstrip": false,
|
288 |
+
"normalized": false,
|
289 |
+
"rstrip": false,
|
290 |
+
"single_word": false,
|
291 |
+
"special": false
|
292 |
+
},
|
293 |
+
"151679": {
|
294 |
+
"content": "<|fast_start|>",
|
295 |
+
"lstrip": false,
|
296 |
+
"normalized": false,
|
297 |
+
"rstrip": false,
|
298 |
+
"single_word": false,
|
299 |
+
"special": false
|
300 |
+
},
|
301 |
+
"151680": {
|
302 |
+
"content": "<|fast_end|>",
|
303 |
+
"lstrip": false,
|
304 |
+
"normalized": false,
|
305 |
+
"rstrip": false,
|
306 |
+
"single_word": false,
|
307 |
+
"special": false
|
308 |
+
}
|
309 |
+
},
|
310 |
+
"additional_special_tokens": [
|
311 |
+
"<|im_start|>",
|
312 |
+
"<|im_end|>",
|
313 |
+
"<|vision_start|>",
|
314 |
+
"<|vision_end|>",
|
315 |
+
"<|vision_pad|>",
|
316 |
+
"<|image_pad|>",
|
317 |
+
"<|video_pad|>"
|
318 |
+
],
|
319 |
+
"bos_token": null,
|
320 |
+
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
|
321 |
+
"clean_up_tokenization_spaces": false,
|
322 |
+
"eos_token": "<|im_end|>",
|
323 |
+
"errors": "replace",
|
324 |
+
"model_max_length": 131072,
|
325 |
+
"pad_token": "<|endoftext|>",
|
326 |
+
"split_special_tokens": false,
|
327 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
328 |
+
"unk_token": null
|
329 |
+
}
|
330 |
+
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|