File size: 2,650 Bytes
417cc1b 9e1323e 417cc1b 90b00e5 417cc1b 23ed486 417cc1b 23ed486 417cc1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
---
license: cc-by-4.0
datasets:
- LEI-QI-233/MicroG-4M
- LEI-QI-233/MicroG-HAR-train-ready
metrics:
- mAP
- F1-score
- Recall
- AUROC
pipeline_tag: video-classification
---
# Here stores all fine-tuned weights of our dataset.
## Please view our paper, GitHub and dataset firstly:
<div align="left">
<a href="https://arxiv.org/abs/2506.02845"
style="display: inline-block; margin: 0 4px;">
<img src="https://img.shields.io/badge/arXiv-Paper-b31b1b?logo=arxiv" alt="arXiv Paper"/>
</a>
<a href="https://github.com/LEI-QI-233/HAR-in-Space"
style="display: inline-block; margin: 0 4px;">
<img src="https://img.shields.io/badge/GitHub-GitHub Repo-white?logo=github"
alt="GitHub"/>
</a>
<a href="https://huggingface.co/datasets/LEI-QI-233/MicroG-4M"
style="display: inline-block; margin: 0 4px;">
<img src="https://img.shields.io/badge/Hugging%20Face-Dataset-orange?logo=huggingface"
alt="Hugging Face Dataset"/>
</a>
</div>
---
### Performance comparison of models fine-tuned on MicroG-4M for HAR
| Arch | TC | Backbone | #Params (M) | mAP (%) | F1-score (%) | Recall (%) | AUROC (%) |
| -------- | ---- | -------- | ----------- | ------- | ------------ | ---------- | --------- |
| C2D | 8×8 | R50 | 23.61 | 29.51 | 8.09 | 6.58 | 83.49 |
| C2D NLN | 8×8 | R50 | 30.97 | 44.64 | 28.30 | 24.86 | 89.40 |
| I3D | 8×8 | R50 | 27.33 | 46.41 | 26.37 | 22.25 | 88.79 |
| I3D NLN | 8×8 | R50 | 34.68 | 47.12 | 28.07 | 24.65 | 88.52 |
| Slow | 8×8 | R50 | 31.74 | 45.19 | 26.13 | 22.77 | 88.49 |
| Slow | 4×16 | R50 | 31.74 | 46.37 | 28.72 | 25.38 | 88.30 |
| SlowFast | 8×8 | R50 | 33.76 | 43.02 | 22.63 | 18.98 | 88.51 |
| SlowFast | 4×16 | R50 | 33.76 | 42.10 | 23.69 | 20.18 | 87.54 |
| MViTv1 | 16×4 | B-CONV | 36.34 | 12.86 | 5.54 | 4.66 | 74.63 |
| MViTv2 | 16×4 | S | 34.27 | 15.14 | 8.16 | 7.17 | 78.61 |
| X3D | 13×6 | S | 2.02 | 14.07 | 5.77 | 4.52 | 78.23 |
| X3D | 16×5 | L | 4.37 | 18.70 | 9.15 | 7.47 | 78.27 |
**Note:**
- All models has been pretrained on Kinetics400 dataset and continually trained on MicroG-4M.
- `TC` denotes the temporal configuration (frame length × sampling rate).
- `#Params` indicates the number of parameters (in millions, M). |