File size: 35,333 Bytes
b6a337b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1624464
0681761
b6a337b
 
 
 
 
 
 
 
 
 
 
 
 
 
0806c70
b6a337b
f21c95c
b6a337b
 
 
 
0806c70
 
 
b6a337b
0806c70
 
b6a337b
 
 
 
 
 
dc500f0
b6a337b
 
 
 
5c4b94d
 
b6a337b
 
 
 
 
 
 
 
 
 
 
 
 
 
9b313a6
b6a337b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25a7b60
 
b6a337b
 
 
 
 
 
 
 
 
dc500f0
b6a337b
25a7b60
 
b6a337b
8e04bab
b6a337b
25a7b60
b6a337b
 
ad69e8d
b6a337b
 
 
 
25a7b60
b6a337b
 
 
 
 
25a7b60
 
b6a337b
 
 
 
 
 
 
 
3cbee3d
b6a337b
 
d962488
b6a337b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125af80
b6a337b
 
 
 
 
 
 
 
125af80
b6a337b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125af80
b6a337b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125af80
b6a337b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125af80
b6a337b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cbee3d
 
 
 
 
 
 
 
b6a337b
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
---
base_model: LGAI-EXAONE/EXAONE-4.0-1.2B
base_model_relation: quantized
license: other
license_name: exaone
license_link: LICENSE
language:
- en
- ko
- es
tags:
- lg-ai
- exaone
- exaone-4.0
pipeline_tag: text-generation
library_name: transformers
---

<p align="center">
<img src="assets/EXAONE_Symbol+BI_3d.png", width="300", style="margin: 40 auto;">
🎉 License Updated! We are pleased to announce our more flexible licensing terms 🤗
<br>✈️ Try on <a href="https://friendli.ai/suite/~/serverless-endpoints/LGAI-EXAONE/EXAONE-4.0-32B/overview">FriendliAI</a> (licensed under commercial purposes)
<br><br><i>📢 EXAONE 4.0 is officially supported by llama.cpp! Please check the guide <a href="#quickstart">below</a></i>
<br>

# EXAONE-4.0-1.2B-GGUF

## Introduction

We introduce **EXAONE 4.0**, which integrates a **Non-reasoning mode** and **Reasoning mode** to achieve both the excellent usability of [EXAONE 3.5](https://github.com/LG-AI-EXAONE/EXAONE-3.5) and the advanced reasoning abilities of [EXAONE Deep](https://github.com/LG-AI-EXAONE/EXAONE-Deep). To pave the way for the agentic AI era, EXAONE 4.0 incorporates essential features such as agentic tool use, and its multilingual capabilities are extended
to support Spanish in addition to English and Korean. 

The EXAONE 4.0 model series consists of two sizes: a mid-size **32B** model optimized for high performance, and a small-size **1.2B** model designed for on-device applications.

In the EXAONE 4.0 architecture, we apply new architectural changes compared to previous EXAONE models as below:

1. **Hybrid Attention**: For the 32B model, we adopt hybrid attention scheme, which combines *Local attention (sliding window attention)* with *Global attention (full attention)* in a 3:1 ratio. We do not use RoPE (Rotary Positional Embedding) for global attention for better global context understanding.
2. **QK-Reorder-Norm**: We reorder the LayerNorm position from the traditional Pre-LN scheme by applying LayerNorm directly to the attention and MLP outputs, and we add RMS normalization right after the Q and K projection. It helps yield better performance on downstream tasks despite consuming more computation.

For more details, please refer to our [technical report](https://arxiv.org/abs/2507.11407), [HuggingFace paper](https://huggingface.co/papers/2507.11407), [blog](https://www.lgresearch.ai/blog/view?seq=576), and [GitHub](https://github.com/LG-AI-EXAONE/EXAONE-4.0).


### Model Configuration

- Number of Parameters (without embeddings): 1.07B
- Number of Layers: 30
- Number of Attention Heads: GQA with 32-heads and 8-KV heads
- Vocab Size: 102,400
- Context Length: 65,536 tokens
- Quantization: `Q8_0`, `Q6_K`, `Q5_K_M`, `Q4_K_M`, `IQ4_XS` in GGUF format (also includes `BF16` weights)

## Quickstart

### llama.cpp
You can run EXAONE models locally using llama.cpp by following these steps:

1. Install the latest version of llama.cpp (version >= `b5932`). Please check the official [installation guide](https://github.com/ggml-org/llama.cpp?tab=readme-ov-file#quick-start) from llama.cpp.

2. Download the EXAONE 4.0 model weights in GGUF format.

    ```bash
    huggingface-cli download LGAI-EXAONE/EXAONE-4.0-1.2B-GGUF \
        --include "EXAONE-4.0-1.2B-Q4_K_M.gguf" \
        --local-dir .
    ```


<details>
<summary>Generation with `llama-cli`</summary>

3. Apply chat template using transformers.

    > This process is necessary to avoid issues with current EXAONE modeling code in `llama.cpp`. This is work in progress at our [PR](https://github.com/ggml-org/llama.cpp/pull/14630). We will update this once these issues are solved.

    ```python
    from transformers import AutoModelForCausalLM, AutoTokenizer

    model_name = "LGAI-EXAONE/EXAONE-4.0-1.2B"
    tokenizer = AutoTokenizer.from_pretrained(model_name)

    messages = [
        {"role": "user", "content": "Let's work together on local system!"}
    ]
    input_text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True,
    )

    print(repr(input_text))
    with open("inputs.txt", "w") as f:
        f.write(input_text)
    ```

4. Generate result with greedy decoding.
    ```bash
    llama-cli -m EXAONE-4.0-1.2B-Q4_K_M.gguf \
        -fa -ngl 31 \
        --temp 0.0 --top-k 1 \
        -f inputs.txt -no-cnv
    ```

</details>

<details>
<summary>OpenAI compatible server with `llama-server`</summary>

3. Run llama-server with EXAONE 4.0 Jinja template. You can find the [chat template file](https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-1.2B-GGUF/blob/main/chat_template.jinja) in this repository.
    ```bash
    llama-server -m EXAONE-4.0-1.2B-Q4_K_M.gguf \
        -c 131072 -fa -ngl 31 \
        --temp 0.6 --top-p 0.95 \
        --jinja --chat-template-file chat_template.jinja \
        --host 0.0.0.0 --port 8820 \
        -a EXAONE-4.0-1.2B-Q4_K_M
    ```

4. Use OpenAI chat completion to test the GGUF model.
    ```bash
    curl -X POST http://localhost:8820/v1/chat/completions \
        -H "Content-Type: application/json" \
        -d '{
            "model": "EXAONE-4.0-1.2B-Q4_K_M",
            "messages": [
                {"role": "user", "content": "Let'\''s work together on server!"}
            ],
            "max_tokens": 1024,
            "temperature": 0.6,
            "top_p": 0.95,
            "chat_template_kwargs": {"enable_thinking": false}
        }'
    ```

</details>


## Performance

The following tables show the evaluation results of each model, with reasoning and non-reasoning mode. The evaluation details can be found in the [technical report](https://arxiv.org/abs/2507.11407).

- ✅ denotes the model has a hybrid reasoning capability, evaluated by selecting reasoning / non-reasoning on the purpose.
- To assess Korean **practical** and **professional** knowledge, we adopt both the [KMMLU-Redux](https://huggingface.co/datasets/LGAI-EXAONE/KMMLU-Redux) and [KMMLU-Pro](https://huggingface.co/datasets/LGAI-EXAONE/KMMLU-Pro) benchmarks. Both datasets are publicly released!
- The evaluation results are based on the original model, not quantized model.


### 32B Reasoning Mode

<table>
    <tr>
        <th> </th>
        <th>EXAONE 4.0 32B </th>
        <th>Phi 4 reasoning-plus</th>
        <th>Magistral Small-2506</th>
        <th>Qwen 3 32B </th>
        <th>Qwen 3 235B </th>
        <th>DeepSeek R1-0528</th>
    </tr>
    <tr>
        <td align="center">Model Size</td>
        <td align="center">32.0B</td>
        <td align="center">14.7B</td>
        <td align="center">23.6B</td>
        <td align="center">32.8B</td>
        <td align="center">235B</td>
        <td align="center">671B</td>
    </tr>
    <tr>
        <td align="center">Hybrid Reasoning</td>
        <td align="center">✅</td>
        <td align="center"> </td>
        <td align="center"> </td>
        <td align="center">✅</td>
        <td align="center">✅</td>
        <td align="center"> </td>
    </tr>
    <tr>
        <td align="center" colspan='7'><i>World Knowledge</i></td>
    </tr>
    <tr>
        <td >MMLU-Redux</td>
        <td align="center">92.3</td>
        <td align="center">90.8</td>
        <td align="center">86.8</td>
        <td align="center">90.9</td>
        <td align="center">92.7</td>
        <td align="center">93.4</td>
    </tr>
    <tr>
        <td >MMLU-Pro</td>
        <td align="center">81.8</td>
        <td align="center">76.0</td>
        <td align="center">73.4</td>
        <td align="center">80.0</td>
        <td align="center">83.0</td>
        <td align="center">85.0</td>
    </tr>
    <tr>
        <td >GPQA-Diamond</td>
        <td align="center">75.4</td>
        <td align="center">68.9</td>
        <td align="center">68.2</td>
        <td align="center">68.4</td>
        <td align="center">71.1</td>
        <td align="center">81.0</td>
    </tr>
    <tr>
        <td align="center" colspan='7'><i>Math/Coding</i></td>
    </tr>
    <tr>
        <td >AIME 2025</td>
        <td align="center">85.3</td>
        <td align="center">78.0</td>
        <td align="center">62.8</td>
        <td align="center">72.9</td>
        <td align="center">81.5</td>
        <td align="center">87.5</td>
    </tr>
    <tr>
        <td >HMMT Feb 2025</td>
        <td align="center">72.9</td>
        <td align="center">53.6</td>
        <td align="center">43.5</td>
        <td align="center">50.4</td>
        <td align="center">62.5</td>
        <td align="center">79.4</td>
    </tr>
    <tr>
        <td >LiveCodeBench v5</td>
        <td align="center">72.6</td>
        <td align="center">51.7</td>
        <td align="center">55.8</td>
        <td align="center">65.7</td>
        <td align="center">70.7</td>
        <td align="center">75.2</td>
    </tr>
    <tr>
        <td >LiveCodeBench v6</td>
        <td align="center">66.7</td>
        <td align="center">47.1</td>
        <td align="center">47.4</td>
        <td align="center">60.1</td>
        <td align="center">58.9</td>
        <td align="center">70.3</td>
    </tr>
    <tr>
        <td align="center" colspan='7'><i>Instruction Following</i></td>
    </tr>
    <tr>
        <td >IFEval</td>
        <td align="center">83.7</td>
        <td align="center">84.9</td>
        <td align="center">37.9</td>
        <td align="center">85.0</td>
        <td align="center">83.4</td>
        <td align="center">80.8</td>
    </tr>
    <tr>
        <td >Multi-IF (EN)</td>
        <td align="center">73.5</td>
        <td align="center">56.1</td>
        <td align="center">27.4</td>
        <td align="center">73.4</td>
        <td align="center">73.4</td>
        <td align="center">72.0</td>
    </tr>
    <tr>
        <td align="center" colspan='7'><i>Agentic Tool Use</i></td>
    </tr>
    <tr>
        <td >BFCL-v3</td>
        <td align="center">63.9</td>
        <td align="center">N/A</td>
        <td align="center">40.4</td>
        <td align="center">70.3</td>
        <td align="center">70.8</td>
        <td align="center">64.7</td>
    </tr>
    <tr>
        <td >Tau-Bench (Airline)</td>
        <td align="center">51.5</td>
        <td align="center">N/A</td>
        <td align="center">38.5</td>
        <td align="center">34.5</td>
        <td align="center">37.5</td>
        <td align="center">53.5</td>
    </tr>
    <tr>
        <td >Tau-Bench (Retail)</td>
        <td align="center">62.8</td>
        <td align="center">N/A</td>
        <td align="center">10.2</td>
        <td align="center">55.2</td>
        <td align="center">58.3</td>
        <td align="center">63.9</td>
    </tr>
    <tr>
        <td align="center" colspan='7'><i>Multilinguality</i></td>
    </tr>
    <tr>
        <td >KMMLU-Pro</td>
        <td align="center">67.7</td>
        <td align="center">55.8</td>
        <td align="center">51.5</td>
        <td align="center">61.4</td>
        <td align="center">68.1</td>
        <td align="center">71.7</td>
    </tr>
    <tr>
        <td >KMMLU-Redux</td>
        <td align="center">72.7</td>
        <td align="center">62.7</td>
        <td align="center">54.6</td>
        <td align="center">67.5</td>
        <td align="center">74.5</td>
        <td align="center">77.0</td>
    </tr>
    <tr>
        <td >KSM</td>
        <td align="center">87.6</td>
        <td align="center">79.8</td>
        <td align="center">71.9</td>
        <td align="center">82.8</td>
        <td align="center">86.2</td>
        <td align="center">86.7</td>
    </tr>
    <tr>
        <td >MMMLU (ES)</td>
        <td align="center">85.6</td>
        <td align="center">84.3</td>
        <td align="center">68.9</td>
        <td align="center">82.8</td>
        <td align="center">86.7</td>
        <td align="center">88.2</td>
    </tr>
    <tr>
        <td >MATH500 (ES)</td>
        <td align="center">95.8</td>
        <td align="center">94.2</td>
        <td align="center">83.5</td>
        <td align="center">94.3</td>
        <td align="center">95.1</td>
        <td align="center">96.0</td>
    </tr>
</table>

### 32B Non-Reasoning Mode

<table>
    <tr>
        <th> </th>
        <th>EXAONE 4.0 32B </th>
        <th>Phi 4</th>
        <th>Mistral-Small-2506</th>
        <th>Gemma3 27B</th>
        <th>Qwen3 32B </th>
        <th>Qwen3 235B </th>
        <th>Llama-4-Maverick</th>
        <th>DeepSeek V3-0324</th>
    </tr>
    <tr>
        <td align="center">Model Size</td>
        <td align="center">32.0B</td>
        <td align="center">14.7B</td>
        <td align="center">24.0B</td>
        <td align="center">27.4B</td>
        <td align="center">32.8B</td>
        <td align="center">235B</td>
        <td align="center">402B</td>
        <td align="center">671B</td>
    </tr>
    <tr>
        <td align="center">Hybrid Reasoning</td>
        <td align="center">✅</td>
        <td align="center"> </td>
        <td align="center"> </td>
        <td align="center"> </td>
        <td align="center">✅</td>
        <td align="center">✅</td>
        <td align="center"> </td>
        <td align="center"> </td>
    </tr>
    <tr>
        <td align="center" colspan='9'><i>World Knowledge</i></td>
    </tr>
    <tr>
        <td >MMLU-Redux</td>
        <td align="center">89.8</td>
        <td align="center">88.3</td>
        <td align="center">85.9</td>
        <td align="center">85.0</td>
        <td align="center">85.7</td>
        <td align="center">89.2</td>
        <td align="center">92.3</td>
        <td align="center">92.3</td>
    </tr>
    <tr>
        <td >MMLU-Pro</td>
        <td align="center">77.6</td>
        <td align="center">70.4</td>
        <td align="center">69.1</td>
        <td align="center">67.5</td>
        <td align="center">74.4</td>
        <td align="center">77.4</td>
        <td align="center">80.5</td>
        <td align="center">81.2</td>
    </tr>
    <tr>
        <td >GPQA-Diamond</td>
        <td align="center">63.7</td>
        <td align="center">56.1</td>
        <td align="center">46.1</td>
        <td align="center">42.4</td>
        <td align="center">54.6</td>
        <td align="center">62.9</td>
        <td align="center">69.8</td>
        <td align="center">68.4</td>
    </tr>
    <tr>
        <td align="center" colspan='9'><i>Math/Coding</i></td>
    </tr>
    <tr>
        <td >AIME 2025</td>
        <td align="center">35.9</td>
        <td align="center">17.8</td>
        <td align="center">30.2</td>
        <td align="center">23.8</td>
        <td align="center">20.2</td>
        <td align="center">24.7</td>
        <td align="center">18.0</td>
        <td align="center">50.0</td>
    </tr>
    <tr>
        <td >HMMT Feb 2025</td>
        <td align="center">21.8</td>
        <td align="center">4.0</td>
        <td align="center">16.9</td>
        <td align="center">10.3</td>
        <td align="center">9.8</td>
        <td align="center">11.9</td>
        <td align="center">7.3</td>
        <td align="center">29.2</td>
    </tr>
    <tr>
        <td >LiveCodeBench v5</td>
        <td align="center">43.3</td>
        <td align="center">24.6</td>
        <td align="center">25.8</td>
        <td align="center">27.5</td>
        <td align="center">31.3</td>
        <td align="center">35.3</td>
        <td align="center">43.4</td>
        <td align="center">46.7</td>
    </tr>
    <tr>
        <td >LiveCodeBench v6</td>
        <td align="center">43.1</td>
        <td align="center">27.4</td>
        <td align="center">26.9</td>
        <td align="center">29.7</td>
        <td align="center">28.0</td>
        <td align="center">31.4</td>
        <td align="center">32.7</td>
        <td align="center">44.0</td>
    </tr>
    <tr>
        <td align="center" colspan='9'><i>Instruction Following</i></td>
    </tr>
    <tr>
        <td >IFEval</td>
        <td align="center">84.8</td>
        <td align="center">63.0</td>
        <td align="center">77.8</td>
        <td align="center">82.6</td>
        <td align="center">83.2</td>
        <td align="center">83.2</td>
        <td align="center">85.4</td>
        <td align="center">81.2</td>
    </tr>
    <tr>
        <td >Multi-IF (EN)</td>
        <td align="center">71.6</td>
        <td align="center">47.7</td>
        <td align="center">63.2</td>
        <td align="center">72.1</td>
        <td align="center">71.9</td>
        <td align="center">72.5</td>
        <td align="center">77.9</td>
        <td align="center">68.3</td>
    </tr>
    <tr>
        <td align="center" colspan='9'><i>Long Context</i></td>
    </tr>
    <tr>
        <td >HELMET</td>
        <td align="center">58.3</td>
        <td align="center">N/A</td>
        <td align="center">61.9</td>
        <td align="center">58.3</td>
        <td align="center">54.5</td>
        <td align="center">63.3</td>
        <td align="center">13.7</td>
        <td align="center">N/A</td>
    </tr>
    <tr>
        <td >RULER</td>
        <td align="center">88.2</td>
        <td align="center">N/A</td>
        <td align="center">71.8</td>
        <td align="center">66.0</td>
        <td align="center">85.6</td>
        <td align="center">90.6</td>
        <td align="center">2.9</td>
        <td align="center">N/A</td>
    </tr>
    <tr>
        <td >LongBench v1</td>
        <td align="center">48.1</td>
        <td align="center">N/A</td>
        <td align="center">51.5</td>
        <td align="center">51.5</td>
        <td align="center">44.2</td>
        <td align="center">45.3</td>
        <td align="center">34.7</td>
        <td align="center">N/A</td>
    </tr>
    <tr>
        <td align="center" colspan='9'><i>Agentic Tool Use</i></td>
    </tr>
    <tr>
        <td >BFCL-v3</td>
        <td align="center">65.2</td>
        <td align="center">N/A</td>
        <td align="center">57.7</td>
        <td align="center">N/A</td>
        <td align="center">63.0</td>
        <td align="center">68.0</td>
        <td align="center">52.9</td>
        <td align="center">63.8</td>
    </tr>
    <tr>
        <td >Tau-Bench (Airline)</td>
        <td align="center">25.5</td>
        <td align="center">N/A</td>
        <td align="center">36.1</td>
        <td align="center">N/A</td>
        <td align="center">16.0</td>
        <td align="center">27.0</td>
        <td align="center">38.0</td>
        <td align="center">40.5</td>
    </tr>
    <tr>
        <td >Tau-Bench (Retail)</td>
        <td align="center">55.9</td>
        <td align="center">N/A</td>
        <td align="center">35.5</td>
        <td align="center">N/A</td>
        <td align="center">47.6</td>
        <td align="center">56.5</td>
        <td align="center">6.5</td>
        <td align="center">68.5</td>
    </tr>
    <tr>
        <td align="center" colspan='9'><i>Multilinguality</i></td>
    </tr>
    <tr>
        <td >KMMLU-Pro</td>
        <td align="center">60.0</td>
        <td align="center">44.8</td>
        <td align="center">51.0</td>
        <td align="center">50.7</td>
        <td align="center">58.3</td>
        <td align="center">64.4</td>
        <td align="center">68.8</td>
        <td align="center">67.3</td>
    </tr>
    <tr>
        <td >KMMLU-Redux</td>
        <td align="center">64.8</td>
        <td align="center">50.1</td>
        <td align="center">53.6</td>
        <td align="center">53.3</td>
        <td align="center">64.4</td>
        <td align="center">71.7</td>
        <td align="center">76.9</td>
        <td align="center">72.2</td>
    </tr>
    <tr>
        <td >KSM</td>
        <td align="center">59.8</td>
        <td align="center">29.1</td>
        <td align="center">35.5</td>
        <td align="center">36.1</td>
        <td align="center">41.3</td>
        <td align="center">46.6</td>
        <td align="center">40.6</td>
        <td align="center">63.5</td>
    </tr>
    <tr>
        <td >Ko-LongBench</td>
        <td align="center">76.9</td>
        <td align="center">N/A</td>
        <td align="center">55.4</td>
        <td align="center">72.0</td>
        <td align="center">73.9</td>
        <td align="center">74.6</td>
        <td align="center">65.6</td>
        <td align="center">N/A</td>
    </tr>
    <tr>
        <td >MMMLU (ES)</td>
        <td align="center">80.6</td>
        <td align="center">81.2</td>
        <td align="center">78.4</td>
        <td align="center">78.7</td>
        <td align="center">82.1</td>
        <td align="center">83.7</td>
        <td align="center">86.9</td>
        <td align="center">86.7</td>
    </tr>
    <tr>
        <td >MATH500 (ES)</td>
        <td align="center">87.3</td>
        <td align="center">78.2</td>
        <td align="center">83.4</td>
        <td align="center">86.8</td>
        <td align="center">84.7</td>
        <td align="center">87.2</td>
        <td align="center">78.7</td>
        <td align="center">89.2</td>
    </tr>
    <tr>
        <td >WMT24++ (ES)</td>
        <td align="center">90.7</td>
        <td align="center">89.3</td>
        <td align="center">92.2</td>
        <td align="center">93.1</td>
        <td align="center">91.4</td>
        <td align="center">92.9</td>
        <td align="center">92.7</td>
        <td align="center">94.3 </td>
    </tr>
</table>

### 1.2B Reasoning Mode

<table>
    <tr>
        <th> </th>
        <th>EXAONE 4.0 1.2B </th>
        <th>EXAONE Deep 2.4B</th>
        <th>Qwen 3 0.6B </th>
        <th>Qwen 3 1.7B </th>
        <th>SmolLM 3 3B </th>
    </tr>
    <tr>
        <td align="center">Model Size</td>
        <td align="center">1.28B</td>
        <td align="center">2.41B</td>
        <td align="center">596M</td>
        <td align="center">1.72B</td>
        <td align="center">3.08B</td>
    </tr>
    <tr>
        <td align="center">Hybrid Reasoning</td>
        <td align="center">✅</td>
        <td align="center"> </td>
        <td align="center">✅</td>
        <td align="center">✅</td>
        <td align="center">✅</td>
    </tr>
    <tr>
        <td align="center" colspan='6'><i>World Knowledge</i></td>
    </tr>
    <tr>
        <td >MMLU-Redux</td>
        <td align="center">71.5</td>
        <td align="center">68.9</td>
        <td align="center">55.6</td>
        <td align="center">73.9</td>
        <td align="center">74.8</td>
    </tr>
    <tr>
        <td >MMLU-Pro</td>
        <td align="center">59.3</td>
        <td align="center">56.4</td>
        <td align="center">38.3</td>
        <td align="center">57.7</td>
        <td align="center">57.8</td>
    </tr>
    <tr>
        <td >GPQA-Diamond</td>
        <td align="center">52.0</td>
        <td align="center">54.3</td>
        <td align="center">27.9</td>
        <td align="center">40.1</td>
        <td align="center">41.7</td>
    </tr>
    <tr>
        <td align="center" colspan='6'><i>Math/Coding</i></td>
    </tr>
    <tr>
        <td >AIME 2025</td>
        <td align="center">45.2</td>
        <td align="center">47.9</td>
        <td align="center">15.1</td>
        <td align="center">36.8</td>
        <td align="center">36.7</td>
    </tr>
    <tr>
        <td >HMMT Feb 2025</td>
        <td align="center">34.0</td>
        <td align="center">27.3</td>
        <td align="center">7.0</td>
        <td align="center">21.8</td>
        <td align="center">26.0</td>
    </tr>
    <tr>
        <td >LiveCodeBench v5</td>
        <td align="center">44.6</td>
        <td align="center">47.2</td>
        <td align="center">12.3</td>
        <td align="center">33.2</td>
        <td align="center">27.6</td>
    </tr>
    <tr>
        <td >LiveCodeBench v6</td>
        <td align="center">45.3</td>
        <td align="center">43.1</td>
        <td align="center">16.4</td>
        <td align="center">29.9</td>
        <td align="center">29.1</td>
    </tr>
    <tr>
        <td align="center" colspan='6'><i>Instruction Following</i></td>
    </tr>
    <tr>
        <td >IFEval</td>
        <td align="center">67.8</td>
        <td align="center">71.0</td>
        <td align="center">59.2</td>
        <td align="center">72.5</td>
        <td align="center">71.2</td>
    </tr>
    <tr>
        <td >Multi-IF (EN)</td>
        <td align="center">53.9</td>
        <td align="center">54.5</td>
        <td align="center">37.5</td>
        <td align="center">53.5</td>
        <td align="center">47.5</td>
    </tr>
    <tr>
        <td align="center" colspan='6'><i>Agentic Tool Use</i></td>
    </tr>
    <tr>
        <td >BFCL-v3</td>
        <td align="center">52.9</td>
        <td align="center">N/A</td>
        <td align="center">46.4</td>
        <td align="center">56.6</td>
        <td align="center">37.1</td>
    </tr>
    <tr>
        <td >Tau-Bench (Airline)</td>
        <td align="center">20.5</td>
        <td align="center">N/A</td>
        <td align="center">22.0</td>
        <td align="center">31.0</td>
        <td align="center">37.0</td>
    </tr>
    <tr>
        <td >Tau-Bench (Retail)</td>
        <td align="center">28.1</td>
        <td align="center">N/A</td>
        <td align="center">3.3</td>
        <td align="center">6.5</td>
        <td align="center">5.4</td>
    </tr>
    <tr>
        <td align="center" colspan='6'><i>Multilinguality</i></td>
    </tr>
    <tr>
        <td >KMMLU-Pro</td>
        <td align="center">42.7</td>
        <td align="center">24.6</td>
        <td align="center">21.6</td>
        <td align="center">38.3</td>
        <td align="center">30.5</td>
    </tr>
    <tr>
        <td >KMMLU-Redux</td>
        <td align="center">46.9</td>
        <td align="center">25.0</td>
        <td align="center">24.5</td>
        <td align="center">38.0</td>
        <td align="center">33.7</td>
    </tr>
    <tr>
        <td >KSM</td>
        <td align="center">60.6</td>
        <td align="center">60.9</td>
        <td align="center">22.8</td>
        <td align="center">52.9</td>
        <td align="center">49.7</td>
    </tr>
    <tr>
        <td >MMMLU (ES)</td>
        <td align="center">62.4</td>
        <td align="center">51.4</td>
        <td align="center">48.8</td>
        <td align="center">64.5</td>
        <td align="center">64.7</td>
    </tr>
    <tr>
        <td >MATH500 (ES)</td>
        <td align="center">88.8</td>
        <td align="center">84.5</td>
        <td align="center">70.6</td>
        <td align="center">87.9</td>
        <td align="center">87.5 </td>
    </tr>
</table>

### 1.2B Non-Reasoning Mode

<table>
    <tr>
        <th> </th>
        <th>EXAONE 4.0 1.2B </th>
        <th>Qwen 3 0.6B </th>
        <th>Gemma 3 1B</th>
        <th>Qwen 3 1.7B </th>
        <th>SmolLM 3 3B </th>
    </tr>
    <tr>
        <td align="center">Model Size</td>
        <td align="center">1.28B</td>
        <td align="center">596M</td>
        <td align="center">1.00B</td>
        <td align="center">1.72B</td>
        <td align="center">3.08B</td>
    </tr>
    <tr>
        <td align="center">Hybrid Reasoning</td>
        <td align="center">✅</td>
        <td align="center">✅</td>
        <td align="center"> </td>
        <td align="center">✅</td>
        <td align="center">✅</td>
    </tr>
    <tr>
        <td align="center" colspan='6'><i>World Knowledge</i></td>
    </tr>
    <tr>
        <td >MMLU-Redux</td>
        <td align="center">66.9</td>
        <td align="center">44.6</td>
        <td align="center">40.9</td>
        <td align="center">63.4</td>
        <td align="center">65.0</td>
    </tr>
    <tr>
        <td >MMLU-Pro</td>
        <td align="center">52.0</td>
        <td align="center">26.6</td>
        <td align="center">14.7</td>
        <td align="center">43.7</td>
        <td align="center">43.6</td>
    </tr>
    <tr>
        <td >GPQA-Diamond</td>
        <td align="center">40.1</td>
        <td align="center">22.9</td>
        <td align="center">19.2</td>
        <td align="center">28.6</td>
        <td align="center">35.7</td>
    </tr>
    <tr>
        <td align="center" colspan='6'><i>Math/Coding</i></td>
    </tr>
    <tr>
        <td >AIME 2025</td>
        <td align="center">23.5</td>
        <td align="center">2.6</td>
        <td align="center">2.1</td>
        <td align="center">9.8</td>
        <td align="center">9.3</td>
    </tr>
    <tr>
        <td >HMMT Feb 2025</td>
        <td align="center">13.0</td>
        <td align="center">1.0</td>
        <td align="center">1.5</td>
        <td align="center">5.1</td>
        <td align="center">4.7</td>
    </tr>
    <tr>
        <td >LiveCodeBench v5</td>
        <td align="center">26.4</td>
        <td align="center">3.6</td>
        <td align="center">1.8</td>
        <td align="center">11.6</td>
        <td align="center">11.4</td>
    </tr>
    <tr>
        <td >LiveCodeBench v6</td>
        <td align="center">30.1</td>
        <td align="center">6.9</td>
        <td align="center">2.3</td>
        <td align="center">16.6</td>
        <td align="center">20.6</td>
    </tr>
    <tr>
        <td align="center" colspan='6'><i>Instruction Following</i></td>
    </tr>
    <tr>
        <td >IFEval</td>
        <td align="center">74.7</td>
        <td align="center">54.5</td>
        <td align="center">80.2</td>
        <td align="center">68.2</td>
        <td align="center">76.7</td>
    </tr>
    <tr>
        <td >Multi-IF (EN)</td>
        <td align="center">62.1</td>
        <td align="center">37.5</td>
        <td align="center">32.5</td>
        <td align="center">51.0</td>
        <td align="center">51.9</td>
    </tr>
    <tr>
        <td align="center" colspan='6'><i>Long Context</i></td>
    </tr>
    <tr>
        <td >HELMET</td>
        <td align="center">41.2</td>
        <td align="center">21.1</td>
        <td align="center">N/A</td>
        <td align="center">33.8</td>
        <td align="center">38.6</td>
    </tr>
    <tr>
        <td >RULER</td>
        <td align="center">77.4</td>
        <td align="center">55.1</td>
        <td align="center">N/A</td>
        <td align="center">65.9</td>
        <td align="center">66.3</td>
    </tr>
    <tr>
        <td >LongBench v1</td>
        <td align="center">36.9</td>
        <td align="center">32.4</td>
        <td align="center">N/A</td>
        <td align="center">41.9</td>
        <td align="center">39.9</td>
    </tr>
    <tr>
        <td align="center" colspan='6'><i>Agentic Tool Use</i></td>
    </tr>
    <tr>
        <td >BFCL-v3</td>
        <td align="center">55.7</td>
        <td align="center">44.1</td>
        <td align="center">N/A</td>
        <td align="center">52.2</td>
        <td align="center">47.3</td>
    </tr>
    <tr>
        <td >Tau-Bench (Airline)</td>
        <td align="center">10.0</td>
        <td align="center">31.5</td>
        <td align="center">N/A</td>
        <td align="center">13.5</td>
        <td align="center">38.0</td>
    </tr>
    <tr>
        <td >Tau-Bench (Retail)</td>
        <td align="center">21.7</td>
        <td align="center">5.7</td>
        <td align="center">N/A</td>
        <td align="center">4.6</td>
        <td align="center">6.7</td>
    </tr>
    <tr>
        <td align="center" colspan='6'><i>Multilinguality</i></td>
    </tr>
    <tr>
        <td >KMMLU-Pro</td>
        <td align="center">37.5</td>
        <td align="center">24.6</td>
        <td align="center">9.7</td>
        <td align="center">29.5</td>
        <td align="center">27.6</td>
    </tr>
    <tr>
        <td >KMMLU-Redux</td>
        <td align="center">40.4</td>
        <td align="center">22.8</td>
        <td align="center">19.4</td>
        <td align="center">29.8</td>
        <td align="center">26.4</td>
    </tr>
    <tr>
        <td >KSM</td>
        <td align="center">26.3</td>
        <td align="center">0.1</td>
        <td align="center">22.8</td>
        <td align="center">16.3</td>
        <td align="center">16.1</td>
    </tr>
    <tr>
        <td >Ko-LongBench</td>
        <td align="center">69.8</td>
        <td align="center">16.4</td>
        <td align="center">N/A</td>
        <td align="center">57.1</td>
        <td align="center">15.7</td>
    </tr>
    <tr>
        <td >MMMLU (ES)</td>
        <td align="center">54.6</td>
        <td align="center">39.5</td>
        <td align="center">35.9</td>
        <td align="center">54.3</td>
        <td align="center">55.1</td>
    </tr>
    <tr>
        <td >MATH500 (ES)</td>
        <td align="center">71.2</td>
        <td align="center">38.5</td>
        <td align="center">41.2</td>
        <td align="center">66.0</td>
        <td align="center">62.4</td>
    </tr>
    <tr>
        <td >WMT24++ (ES)</td>
        <td align="center">65.9</td>
        <td align="center">58.2</td>
        <td align="center">76.9</td>
        <td align="center">76.7</td>
        <td align="center">84.0 </td>
    </tr>
</table>



## Usage Guideline

> [!IMPORTANT]
> To achieve the expected performance, we recommend using the following configurations:
> 
> - For non-reasoning mode, we recommend using a lower temperature value such as `temperature<0.6` for better performance.
> - For reasoning mode (using `<think>` block), we recommend using `temperature=0.6` and `top_p=0.95`.
>     - If you suffer from the model degeneration, we recommend using `presence_penalty=1.5`. 
> - For Korean general conversation with 1.2B model, we suggest to use `temperature=0.1` to avoid code switching.


## Limitation

The EXAONE language model has certain limitations and may occasionally generate inappropriate responses. The language model generates responses based on the output probability of tokens, and it is determined during learning from training data. While we have made every effort to exclude personal, harmful, and biased information from the training data, some problematic content may still be included, potentially leading to undesirable responses. Please note that the text generated by EXAONE language model does not reflect the views of LG AI Research.

- Inappropriate answers may be generated, which contain personal, harmful or other inappropriate information.
- Biased responses may be generated, which are associated with age, gender, race, and so on.
- The generated responses rely heavily on statistics from the training data, which can result in the generation of
semantically or syntactically incorrect sentences.
- Since the model does not reflect the latest information, the responses may be false or contradictory.

LG AI Research strives to reduce potential risks that may arise from EXAONE language models. Users are not allowed
to engage in any malicious activities (e.g., keying in illegal information) that may induce the creation of inappropriate
outputs violating LG AI's ethical principles when using EXAONE language models.


## License

The model is licensed under [EXAONE AI Model License Agreement 1.2 - NC](./LICENSE)

> [!NOTE]
> The main difference from the older version is as below:
> - We removed **the claim of model output ownership** from the license.
> - We restrict the model use **against the development of models that compete with EXAONE**.
> - We allow the model to be used for **educational purposes**, not just research.


## Citation

```
@article{exaone-4.0,
  title={EXAONE 4.0: Unified Large Language Models Integrating Non-reasoning and Reasoning Modes},
  author={{LG AI Research}},
  journal={arXiv preprint arXiv:2507.11407},
  year={2025}
}
```


## Contact

LG AI Research Technical Support: contact[email protected]