File size: 19,739 Bytes
19c678e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
---
base_model: LGAI-EXAONE/EXAONE-4.0-32B
base_model_relation: finetune
license: other
license_name: exaone
license_link: LICENSE
language:
- en
- ko
- es
tags:
- lg-ai
- exaone
- exaone-4.0
pipeline_tag: text-generation
library_name: transformers
---

<p align="center">
<img src="assets/EXAONE_Symbol+BI_3d.png", width="300", style="margin: 40 auto;">
✈️ Try on <a href="https://friendli.ai/suite/~/serverless-endpoints/LGAI-EXAONE/EXAONE-4.0-32B/overview">FriendliAI</a>
<br><br><i>📢 EXAONE 4.0 is officially supported by HuggingFace transformers! Please check out the guide <a href="#quickstart">below</a></i>
<br>

# EXAONE-4.0.1-32B


*The version 4.0.1 is a patch version to reduce unintended or inappropriate responses.*
## Introduction

We introduce **EXAONE 4.0**, which integrates a **Non-reasoning mode** and **Reasoning mode** to achieve both the excellent usability of [EXAONE 3.5](https://github.com/LG-AI-EXAONE/EXAONE-3.5) and the advanced reasoning abilities of [EXAONE Deep](https://github.com/LG-AI-EXAONE/EXAONE-Deep). To pave the way for the agentic AI era, EXAONE 4.0 incorporates essential features such as agentic tool use, and its multilingual capabilities are extended
to support Spanish in addition to English and Korean. 

The EXAONE 4.0 model series consists of two sizes: a mid-size **32B** model optimized for high performance, and a small-size **1.2B** model designed for on-device applications.

In the EXAONE 4.0 architecture, we apply new architectural changes compared to previous EXAONE models as below:

1. **Hybrid Attention**: For the 32B model, we adopt hybrid attention scheme, which combines *Local attention (sliding window attention)* with *Global attention (full attention)* in a 3:1 ratio. We do not use RoPE (Rotary Positional Embedding) for global attention for better global context understanding.
2. **QK-Reorder-Norm**: We reorder the LayerNorm position from the traditional Pre-LN scheme by applying LayerNorm directly to the attention and MLP outputs, and we add RMS normalization right after the Q and K projection. It helps yield better performance on downstream tasks despite consuming more computation.

For more details, please refer to our [technical report](https://arxiv.org/abs/2507.11407), [HuggingFace paper](https://huggingface.co/papers/2507.11407), [blog](https://www.lgresearch.ai/blog/view?seq=576), and [GitHub](https://github.com/LG-AI-EXAONE/EXAONE-4.0).


### Model Configuration

- Number of Parameters (without embeddings): 30.95B
- Number of Layers: 64
- Number of Attention Heads: GQA with 40-heads and 8-KV heads
- Vocab Size: 102,400
- Context Length: 131,072 tokens


## Quickstart

You should install the transformers library with version >= `4.54.0`.

### Non-reasoning mode

For general use, you can use the EXAONE 4.0 models with the following example:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "LGAI-EXAONE/EXAONE-4.0.1-32B"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="bfloat16",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# choose your prompt
prompt = "Explain how wonderful you are"
prompt = "Explica lo increíble que eres"
prompt = "너가 얼마나 대단한지 설명해 봐"

messages = [
    {"role": "user", "content": prompt}
]
input_ids = tokenizer.apply_chat_template(
    messages,
    tokenize=True,
    add_generation_prompt=True,
    return_tensors="pt"
)

output = model.generate(
    input_ids.to(model.device),
    max_new_tokens=128,
    do_sample=False,
)
print(tokenizer.decode(output[0]))
```

### Reasoning mode

The EXAONE 4.0 models have reasoning capabilities for handling complex problems. You can activate reasoning mode by using the `enable_thinking=True` argument with the tokenizer, which opens a reasoning block that starts with `<think>` tag without closing it.

```python
messages = [
    {"role": "user", "content": "Which one is bigger, 3.12 vs 3.9?"}
]
input_ids = tokenizer.apply_chat_template(
    messages,
    tokenize=True,
    add_generation_prompt=True,
    return_tensors="pt",
    enable_thinking=True,
)

output = model.generate(
    input_ids.to(model.device),
    max_new_tokens=128,
    do_sample=True,
    temperature=0.6,
    top_p=0.95
)
print(tokenizer.decode(output[0]))
```

> [!IMPORTANT]
> The model generation with reasoning mode can be affected sensitively by sampling parameters, so please refer to the [Usage Guideline](#usage-guideline) for better quality.

### Agentic tool use

The EXAONE 4.0 models can be used as agents with their tool calling capabilities. You can provide tool schemas to the model for effective tool calling.

```python
import random

def roll_dice(max_num: int):
    return random.randint(1, max_num)

tools = [
    {
        "type": "function",
        "function": {
            "name": "roll_dice",
            "description": "Roll a dice with the number 1 to N. User can select the number N.",
            "parameters": {
                "type": "object",
                "required": ["max_num"],
                "properties": {
                    "max_num": {
                        "type": "int",
                        "description": "Max number of the dice"
                    }
                }
            }
        }
    }
]

messages = [
    {"role": "user", "content": "Roll D6 dice twice!"}
]
input_ids = tokenizer.apply_chat_template(
    messages,
    tokenize=True,
    add_generation_prompt=True,
    return_tensors="pt",
    tools=tools,
)

output = model.generate(
    input_ids.to(model.device),
    max_new_tokens=1024,
    do_sample=True,
    temperature=0.6,
    top_p=0.95,
)
print(tokenizer.decode(output[0]))
```


## Deployment

### TensorRT-LLM

TensorRT-LLM officially supports EXAONE 4.0 models in the latest commits. Before it is released, you need to clone the TensorRT-LLM repository to build from source.

```bash
git clone https://github.com/NVIDIA/TensorRT-LLM.git
```

After cloning the repository, you need to build the source for installation. Please refer to [the official documentation](https://nvidia.github.io/TensorRT-LLM/installation/build-from-source-linux.html) for a guide to build the TensorRT-LLM environment.

You can run the TensorRT-LLM server by following steps:

1. Write extra configuration YAML file
    ```yaml
    # extra_llm_api_config.yaml
    kv_cache_config:
      enable_block_reuse: false
    ```

2. Run server with the configuration
    ```bash
    trtllm-serve serve [MODEL_PATH] --backend pytorch --extra_llm_api_options extra_llm_api_config.yaml
    ```

For more details, please refer to [the documentation](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/models/core/exaone) of EXAONE from TensorRT-LLM.

> [!NOTE]
> Other inference engines including `vllm` and `sglang` don't support the EXAONE 4.0 officially now. We will update as soon as these libraries are updated.


## Performance

The following tables show the evaluation results of each model, with reasoning and non-reasoning mode. The evaluation details can be found in the [technical report](https://arxiv.org/abs/2507.11407).

- ✅ denotes the model has a hybrid reasoning capability, evaluated by selecting reasoning / non-reasoning on the purpose.
- To assess Korean **practical** and **professional** knowledge, we adopt both the [KMMLU-Redux](https://huggingface.co/datasets/LGAI-EXAONE/KMMLU-Redux) and [KMMLU-Pro](https://huggingface.co/datasets/LGAI-EXAONE/KMMLU-Pro) benchmarks. Both datasets are publicly released!


### 32B Reasoning Mode

<table>
    <tr>
        <th> </th>
        <th>EXAONE 4.0.1 32B </th>
        <th>Phi 4 reasoning-plus</th>
        <th>Magistral Small-2506</th>
        <th>Qwen 3 32B </th>
        <th>Qwen 3 235B </th>
        <th>DeepSeek R1-0528</th>
    </tr>
    <tr>
        <td align="center">Model Size</td>
        <td align="center">32.0B</td>
        <td align="center">14.7B</td>
        <td align="center">23.6B</td>
        <td align="center">32.8B</td>
        <td align="center">235B</td>
        <td align="center">671B</td>
    </tr>
    <tr>
        <td align="center">Hybrid Reasoning</td>
        <td align="center">✅</td>
        <td align="center"> </td>
        <td align="center"> </td>
        <td align="center">✅</td>
        <td align="center">✅</td>
        <td align="center"> </td>
    </tr>
    <tr>
        <td align="center" colspan='7'><i>World Knowledge</i></td>
    </tr>
    <tr>
        <td >MMLU-Pro</td>
        <td align="center">81.8</td>
        <td align="center">76.0</td>
        <td align="center">73.4</td>
        <td align="center">80.0</td>
        <td align="center">83.0</td>
        <td align="center">85.0</td>
    </tr>
    <tr>
        <td >GPQA-Diamond</td>
        <td align="center">74.3</td>
        <td align="center">68.9</td>
        <td align="center">68.2</td>
        <td align="center">68.4</td>
        <td align="center">71.1</td>
        <td align="center">81.0</td>
    </tr>
    <tr>
        <td align="center" colspan='7'><i>Math/Coding</i></td>
    </tr>
    <tr>
        <td >AIME 2025</td>
        <td align="center">84.5</td>
        <td align="center">78.0</td>
        <td align="center">62.8</td>
        <td align="center">72.9</td>
        <td align="center">81.5</td>
        <td align="center">87.5</td>
    </tr>
    <tr>
        <td >LiveCodeBench v6</td>
        <td align="center">67.7</td>
        <td align="center">47.1</td>
        <td align="center">47.4</td>
        <td align="center">60.1</td>
        <td align="center">58.9</td>
        <td align="center">70.3</td>
    </tr>
    <tr>
        <td align="center" colspan='7'><i>Instruction Following</i></td>
    </tr>
    <tr>
        <td >IFEval</td>
        <td align="center">82.3</td>
        <td align="center">84.9</td>
        <td align="center">37.9</td>
        <td align="center">85.0</td>
        <td align="center">83.4</td>
        <td align="center">80.8</td>
    </tr>
    <tr>
        <td align="center" colspan='7'><i>Agentic Tool Use</i></td>
    </tr>
    <tr>
        <td >BFCL-v3</td>
        <td align="center">60.7</td>
        <td align="center">N/A</td>
        <td align="center">40.4</td>
        <td align="center">70.3</td>
        <td align="center">70.8</td>
        <td align="center">64.7</td>
    </tr>
    <tr>
        <td >Tau-Bench (Airline)</td>
        <td align="center">48.0</td>
        <td align="center">N/A</td>
        <td align="center">38.5</td>
        <td align="center">34.5</td>
        <td align="center">37.5</td>
        <td align="center">53.5</td>
    </tr>
    <tr>
        <td >Tau-Bench (Retail)</td>
        <td align="center">65.4</td>
        <td align="center">N/A</td>
        <td align="center">10.2</td>
        <td align="center">55.2</td>
        <td align="center">58.3</td>
        <td align="center">63.9</td>
    </tr>
    <tr>
        <td align="center" colspan='7'><i>Multilinguality</i></td>
    </tr>
    <tr>
        <td >KMMLU-Pro</td>
        <td align="center">65.7</td>
        <td align="center">55.8</td>
        <td align="center">51.5</td>
        <td align="center">61.4</td>
        <td align="center">68.1</td>
        <td align="center">71.7</td>
    </tr>
    <tr>
        <td >KSM</td>
        <td align="center">87.0</td>
        <td align="center">79.8</td>
        <td align="center">71.9</td>
        <td align="center">82.8</td>
        <td align="center">86.2</td>
        <td align="center">86.7</td>
    </tr>
    <tr>
        <td >MMMLU (ES)</td>
        <td align="center">85.4</td>
        <td align="center">84.3</td>
        <td align="center">68.9</td>
        <td align="center">82.8</td>
        <td align="center">86.7</td>
        <td align="center">88.2</td>
    </tr>
</table>

### 32B Non-Reasoning Mode

<table>
    <tr>
        <th> </th>
        <th>EXAONE 4.0.1 32B </th>
        <th>Phi 4</th>
        <th>Mistral-Small-2506</th>
        <th>Gemma3 27B</th>
        <th>Qwen3 32B </th>
        <th>Qwen3 235B </th>
        <th>Llama-4-Maverick</th>
        <th>DeepSeek V3-0324</th>
    </tr>
    <tr>
        <td align="center">Model Size</td>
        <td align="center">32.0B</td>
        <td align="center">14.7B</td>
        <td align="center">24.0B</td>
        <td align="center">27.4B</td>
        <td align="center">32.8B</td>
        <td align="center">235B</td>
        <td align="center">402B</td>
        <td align="center">671B</td>
    </tr>
    <tr>
        <td align="center">Hybrid Reasoning</td>
        <td align="center">✅</td>
        <td align="center"> </td>
        <td align="center"> </td>
        <td align="center"> </td>
        <td align="center">✅</td>
        <td align="center">✅</td>
        <td align="center"> </td>
        <td align="center"> </td>
    </tr>
    <tr>
        <td align="center" colspan='9'><i>World Knowledge</i></td>
    </tr>
    <tr>
        <td >MMLU-Pro</td>
        <td align="center">77.4</td>
        <td align="center">70.4</td>
        <td align="center">69.1</td>
        <td align="center">67.5</td>
        <td align="center">74.4</td>
        <td align="center">77.4</td>
        <td align="center">80.5</td>
        <td align="center">81.2</td>
    </tr>
    <tr>
        <td >GPQA-Diamond</td>
        <td align="center">61.6</td>
        <td align="center">56.1</td>
        <td align="center">46.1</td>
        <td align="center">42.4</td>
        <td align="center">54.6</td>
        <td align="center">62.9</td>
        <td align="center">69.8</td>
        <td align="center">68.4</td>
    </tr>
    <tr>
        <td align="center" colspan='9'><i>Math/Coding</i></td>
    </tr>
    <tr>
        <td >AIME 2025</td>
        <td align="center">36.3</td>
        <td align="center">17.8</td>
        <td align="center">30.2</td>
        <td align="center">23.8</td>
        <td align="center">20.2</td>
        <td align="center">24.7</td>
        <td align="center">18.0</td>
        <td align="center">50.0</td>
    </tr>
    <tr>
        <td >LiveCodeBench v6</td>
        <td align="center">43.3</td>
        <td align="center">27.4</td>
        <td align="center">26.9</td>
        <td align="center">29.7</td>
        <td align="center">28.0</td>
        <td align="center">31.4</td>
        <td align="center">32.7</td>
        <td align="center">44.0</td>
    </tr>
    <tr>
        <td align="center" colspan='9'><i>Instruction Following</i></td>
    </tr>
    <tr>
        <td >IFEval</td>
        <td align="center">84.7</td>
        <td align="center">63.0</td>
        <td align="center">77.8</td>
        <td align="center">82.6</td>
        <td align="center">83.2</td>
        <td align="center">83.2</td>
        <td align="center">85.4</td>
        <td align="center">81.2</td>
    </tr>
    <tr>
        <td align="center" colspan='9'><i>Agentic Tool Use</i></td>
    </tr>
    <tr>
        <td >BFCL-v3</td>
        <td align="center">63.9</td>
        <td align="center">N/A</td>
        <td align="center">57.7</td>
        <td align="center">N/A</td>
        <td align="center">63.0</td>
        <td align="center">68.0</td>
        <td align="center">52.9</td>
        <td align="center">63.8</td>
    </tr>
    <tr>
        <td >Tau-Bench (Airline)</td>
        <td align="center">18.5</td>
        <td align="center">N/A</td>
        <td align="center">36.1</td>
        <td align="center">N/A</td>
        <td align="center">16.0</td>
        <td align="center">27.0</td>
        <td align="center">38.0</td>
        <td align="center">40.5</td>
    </tr>
    <tr>
        <td >Tau-Bench (Retail)</td>
        <td align="center">52.0</td>
        <td align="center">N/A</td>
        <td align="center">35.5</td>
        <td align="center">N/A</td>
        <td align="center">47.6</td>
        <td align="center">56.5</td>
        <td align="center">6.5</td>
        <td align="center">68.5</td>
    </tr>
    <tr>
        <td align="center" colspan='9'><i>Multilinguality</i></td>
    </tr>
    <tr>
        <td >KMMLU-Pro</td>
        <td align="center">59.8</td>
        <td align="center">44.8</td>
        <td align="center">51.0</td>
        <td align="center">50.7</td>
        <td align="center">58.3</td>
        <td align="center">64.4</td>
        <td align="center">68.8</td>
        <td align="center">67.3</td>
    </tr>
    <tr>
        <td >KSM</td>
        <td align="center">56.3</td>
        <td align="center">29.1</td>
        <td align="center">35.5</td>
        <td align="center">36.1</td>
        <td align="center">41.3</td>
        <td align="center">46.6</td>
        <td align="center">40.6</td>
        <td align="center">63.5</td>
    </tr>
    <tr>
        <td >MMMLU (ES)</td>
        <td align="center">80.3</td>
        <td align="center">81.2</td>
        <td align="center">78.4</td>
        <td align="center">78.7</td>
        <td align="center">82.1</td>
        <td align="center">83.7</td>
        <td align="center">86.9</td>
        <td align="center">86.7</td>
    </tr>
</table>



## Usage Guideline

> [!IMPORTANT]
> To achieve the expected performance, we recommend using the following configurations:
> 
> - For non-reasoning mode, we recommend using a lower temperature value such as `temperature<0.6` for better performance.
> - For reasoning mode (using `<think>` block), we recommend using `temperature=0.6` and `top_p=0.95`.
>     - If you suffer from the model degeneration, we recommend using `presence_penalty=1.5`. 
> - For Korean general conversation with 1.2B model, we suggest to use `temperature=0.1` to avoid code switching.


## Limitation

The EXAONE language model has certain limitations and may occasionally generate inappropriate responses. The language model generates responses based on the output probability of tokens, and it is determined during learning from training data. While we have made every effort to exclude personal, harmful, and biased information from the training data, some problematic content may still be included, potentially leading to undesirable responses. Please note that the text generated by EXAONE language model does not reflect the views of LG AI Research.

- Inappropriate answers may be generated, which contain personal, harmful or other inappropriate information.
- Biased responses may be generated, which are associated with age, gender, race, and so on.
- The generated responses rely heavily on statistics from the training data, which can result in the generation of
semantically or syntactically incorrect sentences.
- Since the model does not reflect the latest information, the responses may be false or contradictory.

LG AI Research strives to reduce potential risks that may arise from EXAONE language models. Users are not allowed
to engage in any malicious activities (e.g., keying in illegal information) that may induce the creation of inappropriate
outputs violating LG AI's ethical principles when using EXAONE language models.


## License

The model is licensed under [EXAONE AI Model License Agreement 1.2 - NC](./LICENSE)

> [!NOTE]
> The main difference from the older version is as below:
> - We removed **the claim of model output ownership** from the license.
> - We restrict the model use **against the development of models that compete with EXAONE**.
> - We allow the model to be used for **educational purposes**, not just research.


## Citation

```
@article{exaone-4.0,
  title={EXAONE 4.0: Unified Large Language Models Integrating Non-reasoning and Reasoning Modes},
  author={{LG AI Research}},
  journal={arXiv preprint arXiv:2507.11407},
  year={2025}
}
```


## Contact

LG AI Research Technical Support: contact[email protected]