Commit 
							
							·
						
						bd4b02d
	
1
								Parent(s):
							
							c5386f2
								
Upload folder using huggingface_hub
Browse files- config.json +38 -0
 - configuration_crystalcoder.py +149 -0
 - generation_config.json +6 -0
 - model-00001-of-00006.safetensors +3 -0
 - model-00002-of-00006.safetensors +3 -0
 - model-00003-of-00006.safetensors +3 -0
 - model-00004-of-00006.safetensors +3 -0
 - model-00005-of-00006.safetensors +3 -0
 - model-00006-of-00006.safetensors +3 -0
 - model.safetensors.index.json +458 -0
 - modeling_crystalcoder.py +1671 -0
 - special_tokens_map.json +47 -0
 - tokenization_crystalcoder_fast.py +144 -0
 - tokenizer.json +0 -0
 - tokenizer_config.json +245 -0
 
    	
        config.json
    ADDED
    
    | 
         @@ -0,0 +1,38 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "_name_or_path": "CrystalCoder",
         
     | 
| 3 | 
         
            +
              "activation_function": "swiglu",
         
     | 
| 4 | 
         
            +
              "architectures": [
         
     | 
| 5 | 
         
            +
                "CrystalCoderLMHeadModel"
         
     | 
| 6 | 
         
            +
              ],
         
     | 
| 7 | 
         
            +
              "attn_pdrop": 0.0,
         
     | 
| 8 | 
         
            +
              "auto_map": {
         
     | 
| 9 | 
         
            +
                "AutoConfig": "configuration_crystalcoder.CrystalCoderConfig",
         
     | 
| 10 | 
         
            +
                "AutoModel": "modeling_crystalcoder.CrystalCoderModel",
         
     | 
| 11 | 
         
            +
                "AutoModelForCausalLM": "modeling_crystalcoder.CrystalCoderLMHeadModel"
         
     | 
| 12 | 
         
            +
              },
         
     | 
| 13 | 
         
            +
              "bos_token_id": 1,
         
     | 
| 14 | 
         
            +
              "embd_pdrop": 0.0,
         
     | 
| 15 | 
         
            +
              "eos_token_id": 2,
         
     | 
| 16 | 
         
            +
              "initializer_range": 0.02,
         
     | 
| 17 | 
         
            +
              "layer_norm_epsilon": 1e-05,
         
     | 
| 18 | 
         
            +
              "model_type": "crystalcoder",
         
     | 
| 19 | 
         
            +
              "mup_embeddings_scale": 14.6,
         
     | 
| 20 | 
         
            +
              "mup_output_alpha": 2.22,
         
     | 
| 21 | 
         
            +
              "mup_scale_qk_dot_by_d": true,
         
     | 
| 22 | 
         
            +
              "mup_width_scale": 0.0625,
         
     | 
| 23 | 
         
            +
              "n_embd": 4096,
         
     | 
| 24 | 
         
            +
              "n_head": 32,
         
     | 
| 25 | 
         
            +
              "n_inner": 10922,
         
     | 
| 26 | 
         
            +
              "n_layer": 32,
         
     | 
| 27 | 
         
            +
              "n_positions": 2048,
         
     | 
| 28 | 
         
            +
              "position_embedding_type": "rotary",
         
     | 
| 29 | 
         
            +
              "reorder_and_upcast_attn": false,
         
     | 
| 30 | 
         
            +
              "resid_pdrop": 0.0,
         
     | 
| 31 | 
         
            +
              "rotary_dim": 32,
         
     | 
| 32 | 
         
            +
              "scale_attn_by_inverse_layer_idx": false,
         
     | 
| 33 | 
         
            +
              "scale_attn_weights": true,
         
     | 
| 34 | 
         
            +
              "torch_dtype": "float32",
         
     | 
| 35 | 
         
            +
              "transformers_version": "4.35.2",
         
     | 
| 36 | 
         
            +
              "use_cache": true,
         
     | 
| 37 | 
         
            +
              "vocab_size": 32032
         
     | 
| 38 | 
         
            +
            }
         
     | 
    	
        configuration_crystalcoder.py
    ADDED
    
    | 
         @@ -0,0 +1,149 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """ CrystalCoder configuration"""
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            from transformers.configuration_utils import PretrainedConfig
         
     | 
| 4 | 
         
            +
            from transformers.utils import logging
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            logger = logging.get_logger(__name__)
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            class CrystalCoderConfig(PretrainedConfig):
         
     | 
| 11 | 
         
            +
                """
         
     | 
| 12 | 
         
            +
                This is the configuration class to store the configuration of a [`CrystalCoderModel`]. It is used to instantiate a CrystalCoder
         
     | 
| 13 | 
         
            +
                model according to the specified arguments, defining the model architecture.
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
                Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
         
     | 
| 16 | 
         
            +
                documentation from [`PretrainedConfig`] for more information.
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
                Args:
         
     | 
| 20 | 
         
            +
                    vocab_size (`int`, *optional*, defaults to 50257):
         
     | 
| 21 | 
         
            +
                        Vocabulary size of the CrystalCoder model. Defines the number of different tokens that can be represented by the
         
     | 
| 22 | 
         
            +
                        `inputs_ids` passed when calling [`CrystalCoderModel`].
         
     | 
| 23 | 
         
            +
                    n_positions (`int`, *optional*, defaults to 1024):
         
     | 
| 24 | 
         
            +
                        The maximum sequence length that this model might ever be used with. Typically set this to something large
         
     | 
| 25 | 
         
            +
                        just in case (e.g., 512 or 1024 or 2048).
         
     | 
| 26 | 
         
            +
                    n_embd (`int`, *optional*, defaults to 768):
         
     | 
| 27 | 
         
            +
                        Dimensionality of the embeddings and hidden states.
         
     | 
| 28 | 
         
            +
                    n_layer (`int`, *optional*, defaults to 12):
         
     | 
| 29 | 
         
            +
                        Number of hidden layers in the Transformer encoder.
         
     | 
| 30 | 
         
            +
                    n_head (`int`, *optional*, defaults to 12):
         
     | 
| 31 | 
         
            +
                        Number of attention heads for each attention layer in the Transformer encoder.
         
     | 
| 32 | 
         
            +
                    n_inner (`int`, *optional*, defaults to None):
         
     | 
| 33 | 
         
            +
                        Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
         
     | 
| 34 | 
         
            +
                    activation_function (`str`, *optional*, defaults to `"gelu"`):
         
     | 
| 35 | 
         
            +
                        Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new", "swiglu"]`.
         
     | 
| 36 | 
         
            +
                    resid_pdrop (`float`, *optional*, defaults to 0.1):
         
     | 
| 37 | 
         
            +
                        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
         
     | 
| 38 | 
         
            +
                    embd_pdrop (`float`, *optional*, defaults to 0.1):
         
     | 
| 39 | 
         
            +
                        The dropout ratio for the embeddings.
         
     | 
| 40 | 
         
            +
                    attn_pdrop (`float`, *optional*, defaults to 0.1):
         
     | 
| 41 | 
         
            +
                        The dropout ratio for the attention.
         
     | 
| 42 | 
         
            +
                    layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
         
     | 
| 43 | 
         
            +
                        The epsilon to use in the layer normalization layers.
         
     | 
| 44 | 
         
            +
                    initializer_range (`float`, *optional*, defaults to 0.02):
         
     | 
| 45 | 
         
            +
                        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
         
     | 
| 46 | 
         
            +
                    scale_attn_weights (`bool`, *optional*, defaults to `True`):
         
     | 
| 47 | 
         
            +
                        Scale attention weights by dividing by sqrt(hidden_size)..
         
     | 
| 48 | 
         
            +
                    use_cache (`bool`, *optional*, defaults to `True`):
         
     | 
| 49 | 
         
            +
                        Whether or not the model should return the last key/values attentions (not used by all models).
         
     | 
| 50 | 
         
            +
                    scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`):
         
     | 
| 51 | 
         
            +
                        Whether to additionally scale attention weights by `1 / layer_idx + 1`.
         
     | 
| 52 | 
         
            +
                    reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
         
     | 
| 53 | 
         
            +
                        Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention
         
     | 
| 54 | 
         
            +
                        dot-product/softmax to float() when training with mixed precision.
         
     | 
| 55 | 
         
            +
                    position_embedding_type (`str`, *optional*, defaults to `"learned"`):
         
     | 
| 56 | 
         
            +
                        Positional embedding can be either `"alibi"`, `"learned"`, or `"learned"`.
         
     | 
| 57 | 
         
            +
                    rotary_dim (`int`, *optional*, defaults to `n_embd / n_head`):
         
     | 
| 58 | 
         
            +
                        The dimension along which to apply rope.
         
     | 
| 59 | 
         
            +
                    mup_width_scale (`float`, *optional*, defaults to 1.0):
         
     | 
| 60 | 
         
            +
                        muP parameter to scale learning rate and initializers. Calculated as (`d_model,0 / d_model`), where
         
     | 
| 61 | 
         
            +
                        `d_model` is the model's width and `d_model,0` is the proxy model's width.
         
     | 
| 62 | 
         
            +
                    mup_embeddings_scale (`float`, *optional*, defaults to 1.0):
         
     | 
| 63 | 
         
            +
                        muP parameter to scale token and position embeddings.
         
     | 
| 64 | 
         
            +
                    mup_output_alpha (`float`, *optional*, defaults to 1.0):
         
     | 
| 65 | 
         
            +
                        muP parameter to scale output logits (`output_logits_scale = mup_output_alpha * mup_width_scale`).
         
     | 
| 66 | 
         
            +
                    mup_scale_qk_dot_by_d (`bool`, *optional*, defaults to `False`):
         
     | 
| 67 | 
         
            +
                        Scale attention weights by dividing by hidden_size instead of sqrt(hidden_size). Need to set
         
     | 
| 68 | 
         
            +
                        scale_attn_weights to `True` as well.
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                Example:
         
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
                ```python
         
     | 
| 73 | 
         
            +
                >>> from transformers import CrystalCoderConfig, CrystalCoderModel
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
                >>> # Initializing a CrystalCoder configuration
         
     | 
| 76 | 
         
            +
                >>> configuration = CrystalCoderConfig()
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                >>> # Initializing a model (with random weights) from the configuration
         
     | 
| 79 | 
         
            +
                >>> model = CrystalCoderModel(configuration)
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                >>> # Accessing the model configuration
         
     | 
| 82 | 
         
            +
                >>> configuration = model.config
         
     | 
| 83 | 
         
            +
                ```"""
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
                model_type = "crystalcoder"
         
     | 
| 86 | 
         
            +
                keys_to_ignore_at_inference = ["past_key_values"]
         
     | 
| 87 | 
         
            +
                attribute_map = {
         
     | 
| 88 | 
         
            +
                    "hidden_size": "n_embd",
         
     | 
| 89 | 
         
            +
                    "max_position_embeddings": "n_positions",
         
     | 
| 90 | 
         
            +
                    "num_attention_heads": "n_head",
         
     | 
| 91 | 
         
            +
                    "num_hidden_layers": "n_layer",
         
     | 
| 92 | 
         
            +
                }
         
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
                def __init__(
         
     | 
| 95 | 
         
            +
                    self,
         
     | 
| 96 | 
         
            +
                    vocab_size=32032,
         
     | 
| 97 | 
         
            +
                    n_positions=2048,
         
     | 
| 98 | 
         
            +
                    n_embd=4096,
         
     | 
| 99 | 
         
            +
                    n_layer=32,
         
     | 
| 100 | 
         
            +
                    n_head=32,
         
     | 
| 101 | 
         
            +
                    n_inner=None,
         
     | 
| 102 | 
         
            +
                    activation_function="swiglu",
         
     | 
| 103 | 
         
            +
                    resid_pdrop=0.1,
         
     | 
| 104 | 
         
            +
                    embd_pdrop=0.1,
         
     | 
| 105 | 
         
            +
                    attn_pdrop=0.1,
         
     | 
| 106 | 
         
            +
                    layer_norm_epsilon=1e-5,
         
     | 
| 107 | 
         
            +
                    initializer_range=0.02,
         
     | 
| 108 | 
         
            +
                    scale_attn_weights=True,
         
     | 
| 109 | 
         
            +
                    use_cache=True,
         
     | 
| 110 | 
         
            +
                    bos_token_id=1,
         
     | 
| 111 | 
         
            +
                    eos_token_id=2,
         
     | 
| 112 | 
         
            +
                    scale_attn_by_inverse_layer_idx=False,
         
     | 
| 113 | 
         
            +
                    reorder_and_upcast_attn=False,
         
     | 
| 114 | 
         
            +
                    position_embedding_type="rotary",
         
     | 
| 115 | 
         
            +
                    rotary_dim=None,
         
     | 
| 116 | 
         
            +
                    mup_width_scale=1.0,
         
     | 
| 117 | 
         
            +
                    mup_embeddings_scale=1.0,
         
     | 
| 118 | 
         
            +
                    mup_output_alpha=1.0,
         
     | 
| 119 | 
         
            +
                    mup_scale_qk_dot_by_d=False,
         
     | 
| 120 | 
         
            +
                    **kwargs,
         
     | 
| 121 | 
         
            +
                ):
         
     | 
| 122 | 
         
            +
                    self.vocab_size = vocab_size
         
     | 
| 123 | 
         
            +
                    self.n_positions = n_positions
         
     | 
| 124 | 
         
            +
                    self.n_embd = n_embd
         
     | 
| 125 | 
         
            +
                    self.n_layer = n_layer
         
     | 
| 126 | 
         
            +
                    self.n_head = n_head
         
     | 
| 127 | 
         
            +
                    self.n_inner = n_inner
         
     | 
| 128 | 
         
            +
                    self.activation_function = activation_function
         
     | 
| 129 | 
         
            +
                    self.resid_pdrop = resid_pdrop
         
     | 
| 130 | 
         
            +
                    self.embd_pdrop = embd_pdrop
         
     | 
| 131 | 
         
            +
                    self.attn_pdrop = attn_pdrop
         
     | 
| 132 | 
         
            +
                    self.layer_norm_epsilon = layer_norm_epsilon
         
     | 
| 133 | 
         
            +
                    self.initializer_range = initializer_range
         
     | 
| 134 | 
         
            +
                    self.scale_attn_weights = scale_attn_weights
         
     | 
| 135 | 
         
            +
                    self.use_cache = use_cache
         
     | 
| 136 | 
         
            +
                    self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
         
     | 
| 137 | 
         
            +
                    self.reorder_and_upcast_attn = reorder_and_upcast_attn
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
                    self.bos_token_id = bos_token_id
         
     | 
| 140 | 
         
            +
                    self.eos_token_id = eos_token_id
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
                    self.position_embedding_type = position_embedding_type
         
     | 
| 143 | 
         
            +
                    self.rotary_dim = rotary_dim
         
     | 
| 144 | 
         
            +
                    self.mup_width_scale = mup_width_scale
         
     | 
| 145 | 
         
            +
                    self.mup_embeddings_scale = mup_embeddings_scale
         
     | 
| 146 | 
         
            +
                    self.mup_output_alpha = mup_output_alpha
         
     | 
| 147 | 
         
            +
                    self.mup_scale_qk_dot_by_d = mup_scale_qk_dot_by_d
         
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
                    super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
         
     | 
    	
        generation_config.json
    ADDED
    
    | 
         @@ -0,0 +1,6 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "_from_model_config": true,
         
     | 
| 3 | 
         
            +
              "bos_token_id": 1,
         
     | 
| 4 | 
         
            +
              "eos_token_id": 2,
         
     | 
| 5 | 
         
            +
              "transformers_version": "4.35.2"
         
     | 
| 6 | 
         
            +
            }
         
     | 
    	
        model-00001-of-00006.safetensors
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:db76f3a5c43b6db84b99bf51eb26aa78b073d5eacb753c685964e458b5f48643
         
     | 
| 3 | 
         
            +
            size 4999919232
         
     | 
    	
        model-00002-of-00006.safetensors
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:cc7f082cea2f13085254ce20df6f30c4843747dcc24ff61eeedc42297dd188a2
         
     | 
| 3 | 
         
            +
            size 4833059472
         
     | 
    	
        model-00003-of-00006.safetensors
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:4da4c820cdf3473aad2cca5576b5f752e8ab3c7ec668854fee686f8f1d38c4a3
         
     | 
| 3 | 
         
            +
            size 4833059528
         
     | 
    	
        model-00004-of-00006.safetensors
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:8f9fb963d2848fdd86858ad6c58f8753cf899a0b95572da8e1d5f7e2661cc12e
         
     | 
| 3 | 
         
            +
            size 4833059528
         
     | 
    	
        model-00005-of-00006.safetensors
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:785e921c7231f021e7ddf9231536a2ed39177552dadd84cf0e1c71f45a2468e0
         
     | 
| 3 | 
         
            +
            size 4833059528
         
     | 
    	
        model-00006-of-00006.safetensors
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:1158060ce24556971b7f13c3eecb42fc3ff9f2818cb08dbb7c71ad2e19069e97
         
     | 
| 3 | 
         
            +
            size 1969005400
         
     | 
    	
        model.safetensors.index.json
    ADDED
    
    | 
         @@ -0,0 +1,458 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "metadata": {
         
     | 
| 3 | 
         
            +
                "total_size": 26301114880
         
     | 
| 4 | 
         
            +
              },
         
     | 
| 5 | 
         
            +
              "weight_map": {
         
     | 
| 6 | 
         
            +
                "transformer.h.0.attn.c_attn.bias": "model-00001-of-00006.safetensors",
         
     | 
| 7 | 
         
            +
                "transformer.h.0.attn.c_attn.weight": "model-00001-of-00006.safetensors",
         
     | 
| 8 | 
         
            +
                "transformer.h.0.attn.c_proj.bias": "model-00001-of-00006.safetensors",
         
     | 
| 9 | 
         
            +
                "transformer.h.0.attn.c_proj.weight": "model-00001-of-00006.safetensors",
         
     | 
| 10 | 
         
            +
                "transformer.h.0.ln_1.bias": "model-00001-of-00006.safetensors",
         
     | 
| 11 | 
         
            +
                "transformer.h.0.ln_1.weight": "model-00001-of-00006.safetensors",
         
     | 
| 12 | 
         
            +
                "transformer.h.0.ln_2.bias": "model-00001-of-00006.safetensors",
         
     | 
| 13 | 
         
            +
                "transformer.h.0.ln_2.weight": "model-00001-of-00006.safetensors",
         
     | 
| 14 | 
         
            +
                "transformer.h.0.mlp.c_fc.bias": "model-00001-of-00006.safetensors",
         
     | 
| 15 | 
         
            +
                "transformer.h.0.mlp.c_fc.weight": "model-00001-of-00006.safetensors",
         
     | 
| 16 | 
         
            +
                "transformer.h.0.mlp.c_fc2.bias": "model-00001-of-00006.safetensors",
         
     | 
| 17 | 
         
            +
                "transformer.h.0.mlp.c_fc2.weight": "model-00001-of-00006.safetensors",
         
     | 
| 18 | 
         
            +
                "transformer.h.0.mlp.c_proj.bias": "model-00001-of-00006.safetensors",
         
     | 
| 19 | 
         
            +
                "transformer.h.0.mlp.c_proj.weight": "model-00001-of-00006.safetensors",
         
     | 
| 20 | 
         
            +
                "transformer.h.1.attn.c_attn.bias": "model-00001-of-00006.safetensors",
         
     | 
| 21 | 
         
            +
                "transformer.h.1.attn.c_attn.weight": "model-00001-of-00006.safetensors",
         
     | 
| 22 | 
         
            +
                "transformer.h.1.attn.c_proj.bias": "model-00001-of-00006.safetensors",
         
     | 
| 23 | 
         
            +
                "transformer.h.1.attn.c_proj.weight": "model-00001-of-00006.safetensors",
         
     | 
| 24 | 
         
            +
                "transformer.h.1.ln_1.bias": "model-00001-of-00006.safetensors",
         
     | 
| 25 | 
         
            +
                "transformer.h.1.ln_1.weight": "model-00001-of-00006.safetensors",
         
     | 
| 26 | 
         
            +
                "transformer.h.1.ln_2.bias": "model-00001-of-00006.safetensors",
         
     | 
| 27 | 
         
            +
                "transformer.h.1.ln_2.weight": "model-00001-of-00006.safetensors",
         
     | 
| 28 | 
         
            +
                "transformer.h.1.mlp.c_fc.bias": "model-00001-of-00006.safetensors",
         
     | 
| 29 | 
         
            +
                "transformer.h.1.mlp.c_fc.weight": "model-00001-of-00006.safetensors",
         
     | 
| 30 | 
         
            +
                "transformer.h.1.mlp.c_fc2.bias": "model-00001-of-00006.safetensors",
         
     | 
| 31 | 
         
            +
                "transformer.h.1.mlp.c_fc2.weight": "model-00001-of-00006.safetensors",
         
     | 
| 32 | 
         
            +
                "transformer.h.1.mlp.c_proj.bias": "model-00001-of-00006.safetensors",
         
     | 
| 33 | 
         
            +
                "transformer.h.1.mlp.c_proj.weight": "model-00001-of-00006.safetensors",
         
     | 
| 34 | 
         
            +
                "transformer.h.10.attn.c_attn.bias": "model-00002-of-00006.safetensors",
         
     | 
| 35 | 
         
            +
                "transformer.h.10.attn.c_attn.weight": "model-00002-of-00006.safetensors",
         
     | 
| 36 | 
         
            +
                "transformer.h.10.attn.c_proj.bias": "model-00002-of-00006.safetensors",
         
     | 
| 37 | 
         
            +
                "transformer.h.10.attn.c_proj.weight": "model-00002-of-00006.safetensors",
         
     | 
| 38 | 
         
            +
                "transformer.h.10.ln_1.bias": "model-00002-of-00006.safetensors",
         
     | 
| 39 | 
         
            +
                "transformer.h.10.ln_1.weight": "model-00002-of-00006.safetensors",
         
     | 
| 40 | 
         
            +
                "transformer.h.10.ln_2.bias": "model-00002-of-00006.safetensors",
         
     | 
| 41 | 
         
            +
                "transformer.h.10.ln_2.weight": "model-00002-of-00006.safetensors",
         
     | 
| 42 | 
         
            +
                "transformer.h.10.mlp.c_fc.bias": "model-00002-of-00006.safetensors",
         
     | 
| 43 | 
         
            +
                "transformer.h.10.mlp.c_fc.weight": "model-00002-of-00006.safetensors",
         
     | 
| 44 | 
         
            +
                "transformer.h.10.mlp.c_fc2.bias": "model-00002-of-00006.safetensors",
         
     | 
| 45 | 
         
            +
                "transformer.h.10.mlp.c_fc2.weight": "model-00002-of-00006.safetensors",
         
     | 
| 46 | 
         
            +
                "transformer.h.10.mlp.c_proj.bias": "model-00002-of-00006.safetensors",
         
     | 
| 47 | 
         
            +
                "transformer.h.10.mlp.c_proj.weight": "model-00002-of-00006.safetensors",
         
     | 
| 48 | 
         
            +
                "transformer.h.11.attn.c_attn.bias": "model-00002-of-00006.safetensors",
         
     | 
| 49 | 
         
            +
                "transformer.h.11.attn.c_attn.weight": "model-00002-of-00006.safetensors",
         
     | 
| 50 | 
         
            +
                "transformer.h.11.attn.c_proj.bias": "model-00002-of-00006.safetensors",
         
     | 
| 51 | 
         
            +
                "transformer.h.11.attn.c_proj.weight": "model-00002-of-00006.safetensors",
         
     | 
| 52 | 
         
            +
                "transformer.h.11.ln_1.bias": "model-00002-of-00006.safetensors",
         
     | 
| 53 | 
         
            +
                "transformer.h.11.ln_1.weight": "model-00002-of-00006.safetensors",
         
     | 
| 54 | 
         
            +
                "transformer.h.11.ln_2.bias": "model-00002-of-00006.safetensors",
         
     | 
| 55 | 
         
            +
                "transformer.h.11.ln_2.weight": "model-00002-of-00006.safetensors",
         
     | 
| 56 | 
         
            +
                "transformer.h.11.mlp.c_fc.bias": "model-00002-of-00006.safetensors",
         
     | 
| 57 | 
         
            +
                "transformer.h.11.mlp.c_fc.weight": "model-00002-of-00006.safetensors",
         
     | 
| 58 | 
         
            +
                "transformer.h.11.mlp.c_fc2.bias": "model-00003-of-00006.safetensors",
         
     | 
| 59 | 
         
            +
                "transformer.h.11.mlp.c_fc2.weight": "model-00003-of-00006.safetensors",
         
     | 
| 60 | 
         
            +
                "transformer.h.11.mlp.c_proj.bias": "model-00003-of-00006.safetensors",
         
     | 
| 61 | 
         
            +
                "transformer.h.11.mlp.c_proj.weight": "model-00003-of-00006.safetensors",
         
     | 
| 62 | 
         
            +
                "transformer.h.12.attn.c_attn.bias": "model-00003-of-00006.safetensors",
         
     | 
| 63 | 
         
            +
                "transformer.h.12.attn.c_attn.weight": "model-00003-of-00006.safetensors",
         
     | 
| 64 | 
         
            +
                "transformer.h.12.attn.c_proj.bias": "model-00003-of-00006.safetensors",
         
     | 
| 65 | 
         
            +
                "transformer.h.12.attn.c_proj.weight": "model-00003-of-00006.safetensors",
         
     | 
| 66 | 
         
            +
                "transformer.h.12.ln_1.bias": "model-00003-of-00006.safetensors",
         
     | 
| 67 | 
         
            +
                "transformer.h.12.ln_1.weight": "model-00003-of-00006.safetensors",
         
     | 
| 68 | 
         
            +
                "transformer.h.12.ln_2.bias": "model-00003-of-00006.safetensors",
         
     | 
| 69 | 
         
            +
                "transformer.h.12.ln_2.weight": "model-00003-of-00006.safetensors",
         
     | 
| 70 | 
         
            +
                "transformer.h.12.mlp.c_fc.bias": "model-00003-of-00006.safetensors",
         
     | 
| 71 | 
         
            +
                "transformer.h.12.mlp.c_fc.weight": "model-00003-of-00006.safetensors",
         
     | 
| 72 | 
         
            +
                "transformer.h.12.mlp.c_fc2.bias": "model-00003-of-00006.safetensors",
         
     | 
| 73 | 
         
            +
                "transformer.h.12.mlp.c_fc2.weight": "model-00003-of-00006.safetensors",
         
     | 
| 74 | 
         
            +
                "transformer.h.12.mlp.c_proj.bias": "model-00003-of-00006.safetensors",
         
     | 
| 75 | 
         
            +
                "transformer.h.12.mlp.c_proj.weight": "model-00003-of-00006.safetensors",
         
     | 
| 76 | 
         
            +
                "transformer.h.13.attn.c_attn.bias": "model-00003-of-00006.safetensors",
         
     | 
| 77 | 
         
            +
                "transformer.h.13.attn.c_attn.weight": "model-00003-of-00006.safetensors",
         
     | 
| 78 | 
         
            +
                "transformer.h.13.attn.c_proj.bias": "model-00003-of-00006.safetensors",
         
     | 
| 79 | 
         
            +
                "transformer.h.13.attn.c_proj.weight": "model-00003-of-00006.safetensors",
         
     | 
| 80 | 
         
            +
                "transformer.h.13.ln_1.bias": "model-00003-of-00006.safetensors",
         
     | 
| 81 | 
         
            +
                "transformer.h.13.ln_1.weight": "model-00003-of-00006.safetensors",
         
     | 
| 82 | 
         
            +
                "transformer.h.13.ln_2.bias": "model-00003-of-00006.safetensors",
         
     | 
| 83 | 
         
            +
                "transformer.h.13.ln_2.weight": "model-00003-of-00006.safetensors",
         
     | 
| 84 | 
         
            +
                "transformer.h.13.mlp.c_fc.bias": "model-00003-of-00006.safetensors",
         
     | 
| 85 | 
         
            +
                "transformer.h.13.mlp.c_fc.weight": "model-00003-of-00006.safetensors",
         
     | 
| 86 | 
         
            +
                "transformer.h.13.mlp.c_fc2.bias": "model-00003-of-00006.safetensors",
         
     | 
| 87 | 
         
            +
                "transformer.h.13.mlp.c_fc2.weight": "model-00003-of-00006.safetensors",
         
     | 
| 88 | 
         
            +
                "transformer.h.13.mlp.c_proj.bias": "model-00003-of-00006.safetensors",
         
     | 
| 89 | 
         
            +
                "transformer.h.13.mlp.c_proj.weight": "model-00003-of-00006.safetensors",
         
     | 
| 90 | 
         
            +
                "transformer.h.14.attn.c_attn.bias": "model-00003-of-00006.safetensors",
         
     | 
| 91 | 
         
            +
                "transformer.h.14.attn.c_attn.weight": "model-00003-of-00006.safetensors",
         
     | 
| 92 | 
         
            +
                "transformer.h.14.attn.c_proj.bias": "model-00003-of-00006.safetensors",
         
     | 
| 93 | 
         
            +
                "transformer.h.14.attn.c_proj.weight": "model-00003-of-00006.safetensors",
         
     | 
| 94 | 
         
            +
                "transformer.h.14.ln_1.bias": "model-00003-of-00006.safetensors",
         
     | 
| 95 | 
         
            +
                "transformer.h.14.ln_1.weight": "model-00003-of-00006.safetensors",
         
     | 
| 96 | 
         
            +
                "transformer.h.14.ln_2.bias": "model-00003-of-00006.safetensors",
         
     | 
| 97 | 
         
            +
                "transformer.h.14.ln_2.weight": "model-00003-of-00006.safetensors",
         
     | 
| 98 | 
         
            +
                "transformer.h.14.mlp.c_fc.bias": "model-00003-of-00006.safetensors",
         
     | 
| 99 | 
         
            +
                "transformer.h.14.mlp.c_fc.weight": "model-00003-of-00006.safetensors",
         
     | 
| 100 | 
         
            +
                "transformer.h.14.mlp.c_fc2.bias": "model-00003-of-00006.safetensors",
         
     | 
| 101 | 
         
            +
                "transformer.h.14.mlp.c_fc2.weight": "model-00003-of-00006.safetensors",
         
     | 
| 102 | 
         
            +
                "transformer.h.14.mlp.c_proj.bias": "model-00003-of-00006.safetensors",
         
     | 
| 103 | 
         
            +
                "transformer.h.14.mlp.c_proj.weight": "model-00003-of-00006.safetensors",
         
     | 
| 104 | 
         
            +
                "transformer.h.15.attn.c_attn.bias": "model-00003-of-00006.safetensors",
         
     | 
| 105 | 
         
            +
                "transformer.h.15.attn.c_attn.weight": "model-00003-of-00006.safetensors",
         
     | 
| 106 | 
         
            +
                "transformer.h.15.attn.c_proj.bias": "model-00003-of-00006.safetensors",
         
     | 
| 107 | 
         
            +
                "transformer.h.15.attn.c_proj.weight": "model-00003-of-00006.safetensors",
         
     | 
| 108 | 
         
            +
                "transformer.h.15.ln_1.bias": "model-00003-of-00006.safetensors",
         
     | 
| 109 | 
         
            +
                "transformer.h.15.ln_1.weight": "model-00003-of-00006.safetensors",
         
     | 
| 110 | 
         
            +
                "transformer.h.15.ln_2.bias": "model-00003-of-00006.safetensors",
         
     | 
| 111 | 
         
            +
                "transformer.h.15.ln_2.weight": "model-00003-of-00006.safetensors",
         
     | 
| 112 | 
         
            +
                "transformer.h.15.mlp.c_fc.bias": "model-00003-of-00006.safetensors",
         
     | 
| 113 | 
         
            +
                "transformer.h.15.mlp.c_fc.weight": "model-00003-of-00006.safetensors",
         
     | 
| 114 | 
         
            +
                "transformer.h.15.mlp.c_fc2.bias": "model-00003-of-00006.safetensors",
         
     | 
| 115 | 
         
            +
                "transformer.h.15.mlp.c_fc2.weight": "model-00003-of-00006.safetensors",
         
     | 
| 116 | 
         
            +
                "transformer.h.15.mlp.c_proj.bias": "model-00003-of-00006.safetensors",
         
     | 
| 117 | 
         
            +
                "transformer.h.15.mlp.c_proj.weight": "model-00003-of-00006.safetensors",
         
     | 
| 118 | 
         
            +
                "transformer.h.16.attn.c_attn.bias": "model-00003-of-00006.safetensors",
         
     | 
| 119 | 
         
            +
                "transformer.h.16.attn.c_attn.weight": "model-00003-of-00006.safetensors",
         
     | 
| 120 | 
         
            +
                "transformer.h.16.attn.c_proj.bias": "model-00003-of-00006.safetensors",
         
     | 
| 121 | 
         
            +
                "transformer.h.16.attn.c_proj.weight": "model-00003-of-00006.safetensors",
         
     | 
| 122 | 
         
            +
                "transformer.h.16.ln_1.bias": "model-00003-of-00006.safetensors",
         
     | 
| 123 | 
         
            +
                "transformer.h.16.ln_1.weight": "model-00003-of-00006.safetensors",
         
     | 
| 124 | 
         
            +
                "transformer.h.16.ln_2.bias": "model-00003-of-00006.safetensors",
         
     | 
| 125 | 
         
            +
                "transformer.h.16.ln_2.weight": "model-00003-of-00006.safetensors",
         
     | 
| 126 | 
         
            +
                "transformer.h.16.mlp.c_fc.bias": "model-00003-of-00006.safetensors",
         
     | 
| 127 | 
         
            +
                "transformer.h.16.mlp.c_fc.weight": "model-00003-of-00006.safetensors",
         
     | 
| 128 | 
         
            +
                "transformer.h.16.mlp.c_fc2.bias": "model-00003-of-00006.safetensors",
         
     | 
| 129 | 
         
            +
                "transformer.h.16.mlp.c_fc2.weight": "model-00003-of-00006.safetensors",
         
     | 
| 130 | 
         
            +
                "transformer.h.16.mlp.c_proj.bias": "model-00003-of-00006.safetensors",
         
     | 
| 131 | 
         
            +
                "transformer.h.16.mlp.c_proj.weight": "model-00003-of-00006.safetensors",
         
     | 
| 132 | 
         
            +
                "transformer.h.17.attn.c_attn.bias": "model-00003-of-00006.safetensors",
         
     | 
| 133 | 
         
            +
                "transformer.h.17.attn.c_attn.weight": "model-00003-of-00006.safetensors",
         
     | 
| 134 | 
         
            +
                "transformer.h.17.attn.c_proj.bias": "model-00003-of-00006.safetensors",
         
     | 
| 135 | 
         
            +
                "transformer.h.17.attn.c_proj.weight": "model-00003-of-00006.safetensors",
         
     | 
| 136 | 
         
            +
                "transformer.h.17.ln_1.bias": "model-00003-of-00006.safetensors",
         
     | 
| 137 | 
         
            +
                "transformer.h.17.ln_1.weight": "model-00003-of-00006.safetensors",
         
     | 
| 138 | 
         
            +
                "transformer.h.17.ln_2.bias": "model-00003-of-00006.safetensors",
         
     | 
| 139 | 
         
            +
                "transformer.h.17.ln_2.weight": "model-00003-of-00006.safetensors",
         
     | 
| 140 | 
         
            +
                "transformer.h.17.mlp.c_fc.bias": "model-00003-of-00006.safetensors",
         
     | 
| 141 | 
         
            +
                "transformer.h.17.mlp.c_fc.weight": "model-00003-of-00006.safetensors",
         
     | 
| 142 | 
         
            +
                "transformer.h.17.mlp.c_fc2.bias": "model-00004-of-00006.safetensors",
         
     | 
| 143 | 
         
            +
                "transformer.h.17.mlp.c_fc2.weight": "model-00004-of-00006.safetensors",
         
     | 
| 144 | 
         
            +
                "transformer.h.17.mlp.c_proj.bias": "model-00004-of-00006.safetensors",
         
     | 
| 145 | 
         
            +
                "transformer.h.17.mlp.c_proj.weight": "model-00004-of-00006.safetensors",
         
     | 
| 146 | 
         
            +
                "transformer.h.18.attn.c_attn.bias": "model-00004-of-00006.safetensors",
         
     | 
| 147 | 
         
            +
                "transformer.h.18.attn.c_attn.weight": "model-00004-of-00006.safetensors",
         
     | 
| 148 | 
         
            +
                "transformer.h.18.attn.c_proj.bias": "model-00004-of-00006.safetensors",
         
     | 
| 149 | 
         
            +
                "transformer.h.18.attn.c_proj.weight": "model-00004-of-00006.safetensors",
         
     | 
| 150 | 
         
            +
                "transformer.h.18.ln_1.bias": "model-00004-of-00006.safetensors",
         
     | 
| 151 | 
         
            +
                "transformer.h.18.ln_1.weight": "model-00004-of-00006.safetensors",
         
     | 
| 152 | 
         
            +
                "transformer.h.18.ln_2.bias": "model-00004-of-00006.safetensors",
         
     | 
| 153 | 
         
            +
                "transformer.h.18.ln_2.weight": "model-00004-of-00006.safetensors",
         
     | 
| 154 | 
         
            +
                "transformer.h.18.mlp.c_fc.bias": "model-00004-of-00006.safetensors",
         
     | 
| 155 | 
         
            +
                "transformer.h.18.mlp.c_fc.weight": "model-00004-of-00006.safetensors",
         
     | 
| 156 | 
         
            +
                "transformer.h.18.mlp.c_fc2.bias": "model-00004-of-00006.safetensors",
         
     | 
| 157 | 
         
            +
                "transformer.h.18.mlp.c_fc2.weight": "model-00004-of-00006.safetensors",
         
     | 
| 158 | 
         
            +
                "transformer.h.18.mlp.c_proj.bias": "model-00004-of-00006.safetensors",
         
     | 
| 159 | 
         
            +
                "transformer.h.18.mlp.c_proj.weight": "model-00004-of-00006.safetensors",
         
     | 
| 160 | 
         
            +
                "transformer.h.19.attn.c_attn.bias": "model-00004-of-00006.safetensors",
         
     | 
| 161 | 
         
            +
                "transformer.h.19.attn.c_attn.weight": "model-00004-of-00006.safetensors",
         
     | 
| 162 | 
         
            +
                "transformer.h.19.attn.c_proj.bias": "model-00004-of-00006.safetensors",
         
     | 
| 163 | 
         
            +
                "transformer.h.19.attn.c_proj.weight": "model-00004-of-00006.safetensors",
         
     | 
| 164 | 
         
            +
                "transformer.h.19.ln_1.bias": "model-00004-of-00006.safetensors",
         
     | 
| 165 | 
         
            +
                "transformer.h.19.ln_1.weight": "model-00004-of-00006.safetensors",
         
     | 
| 166 | 
         
            +
                "transformer.h.19.ln_2.bias": "model-00004-of-00006.safetensors",
         
     | 
| 167 | 
         
            +
                "transformer.h.19.ln_2.weight": "model-00004-of-00006.safetensors",
         
     | 
| 168 | 
         
            +
                "transformer.h.19.mlp.c_fc.bias": "model-00004-of-00006.safetensors",
         
     | 
| 169 | 
         
            +
                "transformer.h.19.mlp.c_fc.weight": "model-00004-of-00006.safetensors",
         
     | 
| 170 | 
         
            +
                "transformer.h.19.mlp.c_fc2.bias": "model-00004-of-00006.safetensors",
         
     | 
| 171 | 
         
            +
                "transformer.h.19.mlp.c_fc2.weight": "model-00004-of-00006.safetensors",
         
     | 
| 172 | 
         
            +
                "transformer.h.19.mlp.c_proj.bias": "model-00004-of-00006.safetensors",
         
     | 
| 173 | 
         
            +
                "transformer.h.19.mlp.c_proj.weight": "model-00004-of-00006.safetensors",
         
     | 
| 174 | 
         
            +
                "transformer.h.2.attn.c_attn.bias": "model-00001-of-00006.safetensors",
         
     | 
| 175 | 
         
            +
                "transformer.h.2.attn.c_attn.weight": "model-00001-of-00006.safetensors",
         
     | 
| 176 | 
         
            +
                "transformer.h.2.attn.c_proj.bias": "model-00001-of-00006.safetensors",
         
     | 
| 177 | 
         
            +
                "transformer.h.2.attn.c_proj.weight": "model-00001-of-00006.safetensors",
         
     | 
| 178 | 
         
            +
                "transformer.h.2.ln_1.bias": "model-00001-of-00006.safetensors",
         
     | 
| 179 | 
         
            +
                "transformer.h.2.ln_1.weight": "model-00001-of-00006.safetensors",
         
     | 
| 180 | 
         
            +
                "transformer.h.2.ln_2.bias": "model-00001-of-00006.safetensors",
         
     | 
| 181 | 
         
            +
                "transformer.h.2.ln_2.weight": "model-00001-of-00006.safetensors",
         
     | 
| 182 | 
         
            +
                "transformer.h.2.mlp.c_fc.bias": "model-00001-of-00006.safetensors",
         
     | 
| 183 | 
         
            +
                "transformer.h.2.mlp.c_fc.weight": "model-00001-of-00006.safetensors",
         
     | 
| 184 | 
         
            +
                "transformer.h.2.mlp.c_fc2.bias": "model-00001-of-00006.safetensors",
         
     | 
| 185 | 
         
            +
                "transformer.h.2.mlp.c_fc2.weight": "model-00001-of-00006.safetensors",
         
     | 
| 186 | 
         
            +
                "transformer.h.2.mlp.c_proj.bias": "model-00001-of-00006.safetensors",
         
     | 
| 187 | 
         
            +
                "transformer.h.2.mlp.c_proj.weight": "model-00001-of-00006.safetensors",
         
     | 
| 188 | 
         
            +
                "transformer.h.20.attn.c_attn.bias": "model-00004-of-00006.safetensors",
         
     | 
| 189 | 
         
            +
                "transformer.h.20.attn.c_attn.weight": "model-00004-of-00006.safetensors",
         
     | 
| 190 | 
         
            +
                "transformer.h.20.attn.c_proj.bias": "model-00004-of-00006.safetensors",
         
     | 
| 191 | 
         
            +
                "transformer.h.20.attn.c_proj.weight": "model-00004-of-00006.safetensors",
         
     | 
| 192 | 
         
            +
                "transformer.h.20.ln_1.bias": "model-00004-of-00006.safetensors",
         
     | 
| 193 | 
         
            +
                "transformer.h.20.ln_1.weight": "model-00004-of-00006.safetensors",
         
     | 
| 194 | 
         
            +
                "transformer.h.20.ln_2.bias": "model-00004-of-00006.safetensors",
         
     | 
| 195 | 
         
            +
                "transformer.h.20.ln_2.weight": "model-00004-of-00006.safetensors",
         
     | 
| 196 | 
         
            +
                "transformer.h.20.mlp.c_fc.bias": "model-00004-of-00006.safetensors",
         
     | 
| 197 | 
         
            +
                "transformer.h.20.mlp.c_fc.weight": "model-00004-of-00006.safetensors",
         
     | 
| 198 | 
         
            +
                "transformer.h.20.mlp.c_fc2.bias": "model-00004-of-00006.safetensors",
         
     | 
| 199 | 
         
            +
                "transformer.h.20.mlp.c_fc2.weight": "model-00004-of-00006.safetensors",
         
     | 
| 200 | 
         
            +
                "transformer.h.20.mlp.c_proj.bias": "model-00004-of-00006.safetensors",
         
     | 
| 201 | 
         
            +
                "transformer.h.20.mlp.c_proj.weight": "model-00004-of-00006.safetensors",
         
     | 
| 202 | 
         
            +
                "transformer.h.21.attn.c_attn.bias": "model-00004-of-00006.safetensors",
         
     | 
| 203 | 
         
            +
                "transformer.h.21.attn.c_attn.weight": "model-00004-of-00006.safetensors",
         
     | 
| 204 | 
         
            +
                "transformer.h.21.attn.c_proj.bias": "model-00004-of-00006.safetensors",
         
     | 
| 205 | 
         
            +
                "transformer.h.21.attn.c_proj.weight": "model-00004-of-00006.safetensors",
         
     | 
| 206 | 
         
            +
                "transformer.h.21.ln_1.bias": "model-00004-of-00006.safetensors",
         
     | 
| 207 | 
         
            +
                "transformer.h.21.ln_1.weight": "model-00004-of-00006.safetensors",
         
     | 
| 208 | 
         
            +
                "transformer.h.21.ln_2.bias": "model-00004-of-00006.safetensors",
         
     | 
| 209 | 
         
            +
                "transformer.h.21.ln_2.weight": "model-00004-of-00006.safetensors",
         
     | 
| 210 | 
         
            +
                "transformer.h.21.mlp.c_fc.bias": "model-00004-of-00006.safetensors",
         
     | 
| 211 | 
         
            +
                "transformer.h.21.mlp.c_fc.weight": "model-00004-of-00006.safetensors",
         
     | 
| 212 | 
         
            +
                "transformer.h.21.mlp.c_fc2.bias": "model-00004-of-00006.safetensors",
         
     | 
| 213 | 
         
            +
                "transformer.h.21.mlp.c_fc2.weight": "model-00004-of-00006.safetensors",
         
     | 
| 214 | 
         
            +
                "transformer.h.21.mlp.c_proj.bias": "model-00004-of-00006.safetensors",
         
     | 
| 215 | 
         
            +
                "transformer.h.21.mlp.c_proj.weight": "model-00004-of-00006.safetensors",
         
     | 
| 216 | 
         
            +
                "transformer.h.22.attn.c_attn.bias": "model-00004-of-00006.safetensors",
         
     | 
| 217 | 
         
            +
                "transformer.h.22.attn.c_attn.weight": "model-00004-of-00006.safetensors",
         
     | 
| 218 | 
         
            +
                "transformer.h.22.attn.c_proj.bias": "model-00004-of-00006.safetensors",
         
     | 
| 219 | 
         
            +
                "transformer.h.22.attn.c_proj.weight": "model-00004-of-00006.safetensors",
         
     | 
| 220 | 
         
            +
                "transformer.h.22.ln_1.bias": "model-00004-of-00006.safetensors",
         
     | 
| 221 | 
         
            +
                "transformer.h.22.ln_1.weight": "model-00004-of-00006.safetensors",
         
     | 
| 222 | 
         
            +
                "transformer.h.22.ln_2.bias": "model-00004-of-00006.safetensors",
         
     | 
| 223 | 
         
            +
                "transformer.h.22.ln_2.weight": "model-00004-of-00006.safetensors",
         
     | 
| 224 | 
         
            +
                "transformer.h.22.mlp.c_fc.bias": "model-00004-of-00006.safetensors",
         
     | 
| 225 | 
         
            +
                "transformer.h.22.mlp.c_fc.weight": "model-00004-of-00006.safetensors",
         
     | 
| 226 | 
         
            +
                "transformer.h.22.mlp.c_fc2.bias": "model-00004-of-00006.safetensors",
         
     | 
| 227 | 
         
            +
                "transformer.h.22.mlp.c_fc2.weight": "model-00004-of-00006.safetensors",
         
     | 
| 228 | 
         
            +
                "transformer.h.22.mlp.c_proj.bias": "model-00004-of-00006.safetensors",
         
     | 
| 229 | 
         
            +
                "transformer.h.22.mlp.c_proj.weight": "model-00004-of-00006.safetensors",
         
     | 
| 230 | 
         
            +
                "transformer.h.23.attn.c_attn.bias": "model-00004-of-00006.safetensors",
         
     | 
| 231 | 
         
            +
                "transformer.h.23.attn.c_attn.weight": "model-00004-of-00006.safetensors",
         
     | 
| 232 | 
         
            +
                "transformer.h.23.attn.c_proj.bias": "model-00004-of-00006.safetensors",
         
     | 
| 233 | 
         
            +
                "transformer.h.23.attn.c_proj.weight": "model-00004-of-00006.safetensors",
         
     | 
| 234 | 
         
            +
                "transformer.h.23.ln_1.bias": "model-00004-of-00006.safetensors",
         
     | 
| 235 | 
         
            +
                "transformer.h.23.ln_1.weight": "model-00004-of-00006.safetensors",
         
     | 
| 236 | 
         
            +
                "transformer.h.23.ln_2.bias": "model-00004-of-00006.safetensors",
         
     | 
| 237 | 
         
            +
                "transformer.h.23.ln_2.weight": "model-00004-of-00006.safetensors",
         
     | 
| 238 | 
         
            +
                "transformer.h.23.mlp.c_fc.bias": "model-00004-of-00006.safetensors",
         
     | 
| 239 | 
         
            +
                "transformer.h.23.mlp.c_fc.weight": "model-00004-of-00006.safetensors",
         
     | 
| 240 | 
         
            +
                "transformer.h.23.mlp.c_fc2.bias": "model-00005-of-00006.safetensors",
         
     | 
| 241 | 
         
            +
                "transformer.h.23.mlp.c_fc2.weight": "model-00005-of-00006.safetensors",
         
     | 
| 242 | 
         
            +
                "transformer.h.23.mlp.c_proj.bias": "model-00005-of-00006.safetensors",
         
     | 
| 243 | 
         
            +
                "transformer.h.23.mlp.c_proj.weight": "model-00005-of-00006.safetensors",
         
     | 
| 244 | 
         
            +
                "transformer.h.24.attn.c_attn.bias": "model-00005-of-00006.safetensors",
         
     | 
| 245 | 
         
            +
                "transformer.h.24.attn.c_attn.weight": "model-00005-of-00006.safetensors",
         
     | 
| 246 | 
         
            +
                "transformer.h.24.attn.c_proj.bias": "model-00005-of-00006.safetensors",
         
     | 
| 247 | 
         
            +
                "transformer.h.24.attn.c_proj.weight": "model-00005-of-00006.safetensors",
         
     | 
| 248 | 
         
            +
                "transformer.h.24.ln_1.bias": "model-00005-of-00006.safetensors",
         
     | 
| 249 | 
         
            +
                "transformer.h.24.ln_1.weight": "model-00005-of-00006.safetensors",
         
     | 
| 250 | 
         
            +
                "transformer.h.24.ln_2.bias": "model-00005-of-00006.safetensors",
         
     | 
| 251 | 
         
            +
                "transformer.h.24.ln_2.weight": "model-00005-of-00006.safetensors",
         
     | 
| 252 | 
         
            +
                "transformer.h.24.mlp.c_fc.bias": "model-00005-of-00006.safetensors",
         
     | 
| 253 | 
         
            +
                "transformer.h.24.mlp.c_fc.weight": "model-00005-of-00006.safetensors",
         
     | 
| 254 | 
         
            +
                "transformer.h.24.mlp.c_fc2.bias": "model-00005-of-00006.safetensors",
         
     | 
| 255 | 
         
            +
                "transformer.h.24.mlp.c_fc2.weight": "model-00005-of-00006.safetensors",
         
     | 
| 256 | 
         
            +
                "transformer.h.24.mlp.c_proj.bias": "model-00005-of-00006.safetensors",
         
     | 
| 257 | 
         
            +
                "transformer.h.24.mlp.c_proj.weight": "model-00005-of-00006.safetensors",
         
     | 
| 258 | 
         
            +
                "transformer.h.25.attn.c_attn.bias": "model-00005-of-00006.safetensors",
         
     | 
| 259 | 
         
            +
                "transformer.h.25.attn.c_attn.weight": "model-00005-of-00006.safetensors",
         
     | 
| 260 | 
         
            +
                "transformer.h.25.attn.c_proj.bias": "model-00005-of-00006.safetensors",
         
     | 
| 261 | 
         
            +
                "transformer.h.25.attn.c_proj.weight": "model-00005-of-00006.safetensors",
         
     | 
| 262 | 
         
            +
                "transformer.h.25.ln_1.bias": "model-00005-of-00006.safetensors",
         
     | 
| 263 | 
         
            +
                "transformer.h.25.ln_1.weight": "model-00005-of-00006.safetensors",
         
     | 
| 264 | 
         
            +
                "transformer.h.25.ln_2.bias": "model-00005-of-00006.safetensors",
         
     | 
| 265 | 
         
            +
                "transformer.h.25.ln_2.weight": "model-00005-of-00006.safetensors",
         
     | 
| 266 | 
         
            +
                "transformer.h.25.mlp.c_fc.bias": "model-00005-of-00006.safetensors",
         
     | 
| 267 | 
         
            +
                "transformer.h.25.mlp.c_fc.weight": "model-00005-of-00006.safetensors",
         
     | 
| 268 | 
         
            +
                "transformer.h.25.mlp.c_fc2.bias": "model-00005-of-00006.safetensors",
         
     | 
| 269 | 
         
            +
                "transformer.h.25.mlp.c_fc2.weight": "model-00005-of-00006.safetensors",
         
     | 
| 270 | 
         
            +
                "transformer.h.25.mlp.c_proj.bias": "model-00005-of-00006.safetensors",
         
     | 
| 271 | 
         
            +
                "transformer.h.25.mlp.c_proj.weight": "model-00005-of-00006.safetensors",
         
     | 
| 272 | 
         
            +
                "transformer.h.26.attn.c_attn.bias": "model-00005-of-00006.safetensors",
         
     | 
| 273 | 
         
            +
                "transformer.h.26.attn.c_attn.weight": "model-00005-of-00006.safetensors",
         
     | 
| 274 | 
         
            +
                "transformer.h.26.attn.c_proj.bias": "model-00005-of-00006.safetensors",
         
     | 
| 275 | 
         
            +
                "transformer.h.26.attn.c_proj.weight": "model-00005-of-00006.safetensors",
         
     | 
| 276 | 
         
            +
                "transformer.h.26.ln_1.bias": "model-00005-of-00006.safetensors",
         
     | 
| 277 | 
         
            +
                "transformer.h.26.ln_1.weight": "model-00005-of-00006.safetensors",
         
     | 
| 278 | 
         
            +
                "transformer.h.26.ln_2.bias": "model-00005-of-00006.safetensors",
         
     | 
| 279 | 
         
            +
                "transformer.h.26.ln_2.weight": "model-00005-of-00006.safetensors",
         
     | 
| 280 | 
         
            +
                "transformer.h.26.mlp.c_fc.bias": "model-00005-of-00006.safetensors",
         
     | 
| 281 | 
         
            +
                "transformer.h.26.mlp.c_fc.weight": "model-00005-of-00006.safetensors",
         
     | 
| 282 | 
         
            +
                "transformer.h.26.mlp.c_fc2.bias": "model-00005-of-00006.safetensors",
         
     | 
| 283 | 
         
            +
                "transformer.h.26.mlp.c_fc2.weight": "model-00005-of-00006.safetensors",
         
     | 
| 284 | 
         
            +
                "transformer.h.26.mlp.c_proj.bias": "model-00005-of-00006.safetensors",
         
     | 
| 285 | 
         
            +
                "transformer.h.26.mlp.c_proj.weight": "model-00005-of-00006.safetensors",
         
     | 
| 286 | 
         
            +
                "transformer.h.27.attn.c_attn.bias": "model-00005-of-00006.safetensors",
         
     | 
| 287 | 
         
            +
                "transformer.h.27.attn.c_attn.weight": "model-00005-of-00006.safetensors",
         
     | 
| 288 | 
         
            +
                "transformer.h.27.attn.c_proj.bias": "model-00005-of-00006.safetensors",
         
     | 
| 289 | 
         
            +
                "transformer.h.27.attn.c_proj.weight": "model-00005-of-00006.safetensors",
         
     | 
| 290 | 
         
            +
                "transformer.h.27.ln_1.bias": "model-00005-of-00006.safetensors",
         
     | 
| 291 | 
         
            +
                "transformer.h.27.ln_1.weight": "model-00005-of-00006.safetensors",
         
     | 
| 292 | 
         
            +
                "transformer.h.27.ln_2.bias": "model-00005-of-00006.safetensors",
         
     | 
| 293 | 
         
            +
                "transformer.h.27.ln_2.weight": "model-00005-of-00006.safetensors",
         
     | 
| 294 | 
         
            +
                "transformer.h.27.mlp.c_fc.bias": "model-00005-of-00006.safetensors",
         
     | 
| 295 | 
         
            +
                "transformer.h.27.mlp.c_fc.weight": "model-00005-of-00006.safetensors",
         
     | 
| 296 | 
         
            +
                "transformer.h.27.mlp.c_fc2.bias": "model-00005-of-00006.safetensors",
         
     | 
| 297 | 
         
            +
                "transformer.h.27.mlp.c_fc2.weight": "model-00005-of-00006.safetensors",
         
     | 
| 298 | 
         
            +
                "transformer.h.27.mlp.c_proj.bias": "model-00005-of-00006.safetensors",
         
     | 
| 299 | 
         
            +
                "transformer.h.27.mlp.c_proj.weight": "model-00005-of-00006.safetensors",
         
     | 
| 300 | 
         
            +
                "transformer.h.28.attn.c_attn.bias": "model-00005-of-00006.safetensors",
         
     | 
| 301 | 
         
            +
                "transformer.h.28.attn.c_attn.weight": "model-00005-of-00006.safetensors",
         
     | 
| 302 | 
         
            +
                "transformer.h.28.attn.c_proj.bias": "model-00005-of-00006.safetensors",
         
     | 
| 303 | 
         
            +
                "transformer.h.28.attn.c_proj.weight": "model-00005-of-00006.safetensors",
         
     | 
| 304 | 
         
            +
                "transformer.h.28.ln_1.bias": "model-00005-of-00006.safetensors",
         
     | 
| 305 | 
         
            +
                "transformer.h.28.ln_1.weight": "model-00005-of-00006.safetensors",
         
     | 
| 306 | 
         
            +
                "transformer.h.28.ln_2.bias": "model-00005-of-00006.safetensors",
         
     | 
| 307 | 
         
            +
                "transformer.h.28.ln_2.weight": "model-00005-of-00006.safetensors",
         
     | 
| 308 | 
         
            +
                "transformer.h.28.mlp.c_fc.bias": "model-00005-of-00006.safetensors",
         
     | 
| 309 | 
         
            +
                "transformer.h.28.mlp.c_fc.weight": "model-00005-of-00006.safetensors",
         
     | 
| 310 | 
         
            +
                "transformer.h.28.mlp.c_fc2.bias": "model-00005-of-00006.safetensors",
         
     | 
| 311 | 
         
            +
                "transformer.h.28.mlp.c_fc2.weight": "model-00005-of-00006.safetensors",
         
     | 
| 312 | 
         
            +
                "transformer.h.28.mlp.c_proj.bias": "model-00005-of-00006.safetensors",
         
     | 
| 313 | 
         
            +
                "transformer.h.28.mlp.c_proj.weight": "model-00005-of-00006.safetensors",
         
     | 
| 314 | 
         
            +
                "transformer.h.29.attn.c_attn.bias": "model-00005-of-00006.safetensors",
         
     | 
| 315 | 
         
            +
                "transformer.h.29.attn.c_attn.weight": "model-00005-of-00006.safetensors",
         
     | 
| 316 | 
         
            +
                "transformer.h.29.attn.c_proj.bias": "model-00005-of-00006.safetensors",
         
     | 
| 317 | 
         
            +
                "transformer.h.29.attn.c_proj.weight": "model-00005-of-00006.safetensors",
         
     | 
| 318 | 
         
            +
                "transformer.h.29.ln_1.bias": "model-00005-of-00006.safetensors",
         
     | 
| 319 | 
         
            +
                "transformer.h.29.ln_1.weight": "model-00005-of-00006.safetensors",
         
     | 
| 320 | 
         
            +
                "transformer.h.29.ln_2.bias": "model-00005-of-00006.safetensors",
         
     | 
| 321 | 
         
            +
                "transformer.h.29.ln_2.weight": "model-00005-of-00006.safetensors",
         
     | 
| 322 | 
         
            +
                "transformer.h.29.mlp.c_fc.bias": "model-00005-of-00006.safetensors",
         
     | 
| 323 | 
         
            +
                "transformer.h.29.mlp.c_fc.weight": "model-00005-of-00006.safetensors",
         
     | 
| 324 | 
         
            +
                "transformer.h.29.mlp.c_fc2.bias": "model-00006-of-00006.safetensors",
         
     | 
| 325 | 
         
            +
                "transformer.h.29.mlp.c_fc2.weight": "model-00006-of-00006.safetensors",
         
     | 
| 326 | 
         
            +
                "transformer.h.29.mlp.c_proj.bias": "model-00006-of-00006.safetensors",
         
     | 
| 327 | 
         
            +
                "transformer.h.29.mlp.c_proj.weight": "model-00006-of-00006.safetensors",
         
     | 
| 328 | 
         
            +
                "transformer.h.3.attn.c_attn.bias": "model-00001-of-00006.safetensors",
         
     | 
| 329 | 
         
            +
                "transformer.h.3.attn.c_attn.weight": "model-00001-of-00006.safetensors",
         
     | 
| 330 | 
         
            +
                "transformer.h.3.attn.c_proj.bias": "model-00001-of-00006.safetensors",
         
     | 
| 331 | 
         
            +
                "transformer.h.3.attn.c_proj.weight": "model-00001-of-00006.safetensors",
         
     | 
| 332 | 
         
            +
                "transformer.h.3.ln_1.bias": "model-00001-of-00006.safetensors",
         
     | 
| 333 | 
         
            +
                "transformer.h.3.ln_1.weight": "model-00001-of-00006.safetensors",
         
     | 
| 334 | 
         
            +
                "transformer.h.3.ln_2.bias": "model-00001-of-00006.safetensors",
         
     | 
| 335 | 
         
            +
                "transformer.h.3.ln_2.weight": "model-00001-of-00006.safetensors",
         
     | 
| 336 | 
         
            +
                "transformer.h.3.mlp.c_fc.bias": "model-00001-of-00006.safetensors",
         
     | 
| 337 | 
         
            +
                "transformer.h.3.mlp.c_fc.weight": "model-00001-of-00006.safetensors",
         
     | 
| 338 | 
         
            +
                "transformer.h.3.mlp.c_fc2.bias": "model-00001-of-00006.safetensors",
         
     | 
| 339 | 
         
            +
                "transformer.h.3.mlp.c_fc2.weight": "model-00001-of-00006.safetensors",
         
     | 
| 340 | 
         
            +
                "transformer.h.3.mlp.c_proj.bias": "model-00001-of-00006.safetensors",
         
     | 
| 341 | 
         
            +
                "transformer.h.3.mlp.c_proj.weight": "model-00001-of-00006.safetensors",
         
     | 
| 342 | 
         
            +
                "transformer.h.30.attn.c_attn.bias": "model-00006-of-00006.safetensors",
         
     | 
| 343 | 
         
            +
                "transformer.h.30.attn.c_attn.weight": "model-00006-of-00006.safetensors",
         
     | 
| 344 | 
         
            +
                "transformer.h.30.attn.c_proj.bias": "model-00006-of-00006.safetensors",
         
     | 
| 345 | 
         
            +
                "transformer.h.30.attn.c_proj.weight": "model-00006-of-00006.safetensors",
         
     | 
| 346 | 
         
            +
                "transformer.h.30.ln_1.bias": "model-00006-of-00006.safetensors",
         
     | 
| 347 | 
         
            +
                "transformer.h.30.ln_1.weight": "model-00006-of-00006.safetensors",
         
     | 
| 348 | 
         
            +
                "transformer.h.30.ln_2.bias": "model-00006-of-00006.safetensors",
         
     | 
| 349 | 
         
            +
                "transformer.h.30.ln_2.weight": "model-00006-of-00006.safetensors",
         
     | 
| 350 | 
         
            +
                "transformer.h.30.mlp.c_fc.bias": "model-00006-of-00006.safetensors",
         
     | 
| 351 | 
         
            +
                "transformer.h.30.mlp.c_fc.weight": "model-00006-of-00006.safetensors",
         
     | 
| 352 | 
         
            +
                "transformer.h.30.mlp.c_fc2.bias": "model-00006-of-00006.safetensors",
         
     | 
| 353 | 
         
            +
                "transformer.h.30.mlp.c_fc2.weight": "model-00006-of-00006.safetensors",
         
     | 
| 354 | 
         
            +
                "transformer.h.30.mlp.c_proj.bias": "model-00006-of-00006.safetensors",
         
     | 
| 355 | 
         
            +
                "transformer.h.30.mlp.c_proj.weight": "model-00006-of-00006.safetensors",
         
     | 
| 356 | 
         
            +
                "transformer.h.31.attn.c_attn.bias": "model-00006-of-00006.safetensors",
         
     | 
| 357 | 
         
            +
                "transformer.h.31.attn.c_attn.weight": "model-00006-of-00006.safetensors",
         
     | 
| 358 | 
         
            +
                "transformer.h.31.attn.c_proj.bias": "model-00006-of-00006.safetensors",
         
     | 
| 359 | 
         
            +
                "transformer.h.31.attn.c_proj.weight": "model-00006-of-00006.safetensors",
         
     | 
| 360 | 
         
            +
                "transformer.h.31.ln_1.bias": "model-00006-of-00006.safetensors",
         
     | 
| 361 | 
         
            +
                "transformer.h.31.ln_1.weight": "model-00006-of-00006.safetensors",
         
     | 
| 362 | 
         
            +
                "transformer.h.31.ln_2.bias": "model-00006-of-00006.safetensors",
         
     | 
| 363 | 
         
            +
                "transformer.h.31.ln_2.weight": "model-00006-of-00006.safetensors",
         
     | 
| 364 | 
         
            +
                "transformer.h.31.mlp.c_fc.bias": "model-00006-of-00006.safetensors",
         
     | 
| 365 | 
         
            +
                "transformer.h.31.mlp.c_fc.weight": "model-00006-of-00006.safetensors",
         
     | 
| 366 | 
         
            +
                "transformer.h.31.mlp.c_fc2.bias": "model-00006-of-00006.safetensors",
         
     | 
| 367 | 
         
            +
                "transformer.h.31.mlp.c_fc2.weight": "model-00006-of-00006.safetensors",
         
     | 
| 368 | 
         
            +
                "transformer.h.31.mlp.c_proj.bias": "model-00006-of-00006.safetensors",
         
     | 
| 369 | 
         
            +
                "transformer.h.31.mlp.c_proj.weight": "model-00006-of-00006.safetensors",
         
     | 
| 370 | 
         
            +
                "transformer.h.4.attn.c_attn.bias": "model-00001-of-00006.safetensors",
         
     | 
| 371 | 
         
            +
                "transformer.h.4.attn.c_attn.weight": "model-00001-of-00006.safetensors",
         
     | 
| 372 | 
         
            +
                "transformer.h.4.attn.c_proj.bias": "model-00001-of-00006.safetensors",
         
     | 
| 373 | 
         
            +
                "transformer.h.4.attn.c_proj.weight": "model-00001-of-00006.safetensors",
         
     | 
| 374 | 
         
            +
                "transformer.h.4.ln_1.bias": "model-00001-of-00006.safetensors",
         
     | 
| 375 | 
         
            +
                "transformer.h.4.ln_1.weight": "model-00001-of-00006.safetensors",
         
     | 
| 376 | 
         
            +
                "transformer.h.4.ln_2.bias": "model-00001-of-00006.safetensors",
         
     | 
| 377 | 
         
            +
                "transformer.h.4.ln_2.weight": "model-00001-of-00006.safetensors",
         
     | 
| 378 | 
         
            +
                "transformer.h.4.mlp.c_fc.bias": "model-00001-of-00006.safetensors",
         
     | 
| 379 | 
         
            +
                "transformer.h.4.mlp.c_fc.weight": "model-00001-of-00006.safetensors",
         
     | 
| 380 | 
         
            +
                "transformer.h.4.mlp.c_fc2.bias": "model-00001-of-00006.safetensors",
         
     | 
| 381 | 
         
            +
                "transformer.h.4.mlp.c_fc2.weight": "model-00001-of-00006.safetensors",
         
     | 
| 382 | 
         
            +
                "transformer.h.4.mlp.c_proj.bias": "model-00001-of-00006.safetensors",
         
     | 
| 383 | 
         
            +
                "transformer.h.4.mlp.c_proj.weight": "model-00001-of-00006.safetensors",
         
     | 
| 384 | 
         
            +
                "transformer.h.5.attn.c_attn.bias": "model-00001-of-00006.safetensors",
         
     | 
| 385 | 
         
            +
                "transformer.h.5.attn.c_attn.weight": "model-00001-of-00006.safetensors",
         
     | 
| 386 | 
         
            +
                "transformer.h.5.attn.c_proj.bias": "model-00001-of-00006.safetensors",
         
     | 
| 387 | 
         
            +
                "transformer.h.5.attn.c_proj.weight": "model-00001-of-00006.safetensors",
         
     | 
| 388 | 
         
            +
                "transformer.h.5.ln_1.bias": "model-00001-of-00006.safetensors",
         
     | 
| 389 | 
         
            +
                "transformer.h.5.ln_1.weight": "model-00001-of-00006.safetensors",
         
     | 
| 390 | 
         
            +
                "transformer.h.5.ln_2.bias": "model-00001-of-00006.safetensors",
         
     | 
| 391 | 
         
            +
                "transformer.h.5.ln_2.weight": "model-00001-of-00006.safetensors",
         
     | 
| 392 | 
         
            +
                "transformer.h.5.mlp.c_fc.bias": "model-00001-of-00006.safetensors",
         
     | 
| 393 | 
         
            +
                "transformer.h.5.mlp.c_fc.weight": "model-00001-of-00006.safetensors",
         
     | 
| 394 | 
         
            +
                "transformer.h.5.mlp.c_fc2.bias": "model-00002-of-00006.safetensors",
         
     | 
| 395 | 
         
            +
                "transformer.h.5.mlp.c_fc2.weight": "model-00002-of-00006.safetensors",
         
     | 
| 396 | 
         
            +
                "transformer.h.5.mlp.c_proj.bias": "model-00002-of-00006.safetensors",
         
     | 
| 397 | 
         
            +
                "transformer.h.5.mlp.c_proj.weight": "model-00002-of-00006.safetensors",
         
     | 
| 398 | 
         
            +
                "transformer.h.6.attn.c_attn.bias": "model-00002-of-00006.safetensors",
         
     | 
| 399 | 
         
            +
                "transformer.h.6.attn.c_attn.weight": "model-00002-of-00006.safetensors",
         
     | 
| 400 | 
         
            +
                "transformer.h.6.attn.c_proj.bias": "model-00002-of-00006.safetensors",
         
     | 
| 401 | 
         
            +
                "transformer.h.6.attn.c_proj.weight": "model-00002-of-00006.safetensors",
         
     | 
| 402 | 
         
            +
                "transformer.h.6.ln_1.bias": "model-00002-of-00006.safetensors",
         
     | 
| 403 | 
         
            +
                "transformer.h.6.ln_1.weight": "model-00002-of-00006.safetensors",
         
     | 
| 404 | 
         
            +
                "transformer.h.6.ln_2.bias": "model-00002-of-00006.safetensors",
         
     | 
| 405 | 
         
            +
                "transformer.h.6.ln_2.weight": "model-00002-of-00006.safetensors",
         
     | 
| 406 | 
         
            +
                "transformer.h.6.mlp.c_fc.bias": "model-00002-of-00006.safetensors",
         
     | 
| 407 | 
         
            +
                "transformer.h.6.mlp.c_fc.weight": "model-00002-of-00006.safetensors",
         
     | 
| 408 | 
         
            +
                "transformer.h.6.mlp.c_fc2.bias": "model-00002-of-00006.safetensors",
         
     | 
| 409 | 
         
            +
                "transformer.h.6.mlp.c_fc2.weight": "model-00002-of-00006.safetensors",
         
     | 
| 410 | 
         
            +
                "transformer.h.6.mlp.c_proj.bias": "model-00002-of-00006.safetensors",
         
     | 
| 411 | 
         
            +
                "transformer.h.6.mlp.c_proj.weight": "model-00002-of-00006.safetensors",
         
     | 
| 412 | 
         
            +
                "transformer.h.7.attn.c_attn.bias": "model-00002-of-00006.safetensors",
         
     | 
| 413 | 
         
            +
                "transformer.h.7.attn.c_attn.weight": "model-00002-of-00006.safetensors",
         
     | 
| 414 | 
         
            +
                "transformer.h.7.attn.c_proj.bias": "model-00002-of-00006.safetensors",
         
     | 
| 415 | 
         
            +
                "transformer.h.7.attn.c_proj.weight": "model-00002-of-00006.safetensors",
         
     | 
| 416 | 
         
            +
                "transformer.h.7.ln_1.bias": "model-00002-of-00006.safetensors",
         
     | 
| 417 | 
         
            +
                "transformer.h.7.ln_1.weight": "model-00002-of-00006.safetensors",
         
     | 
| 418 | 
         
            +
                "transformer.h.7.ln_2.bias": "model-00002-of-00006.safetensors",
         
     | 
| 419 | 
         
            +
                "transformer.h.7.ln_2.weight": "model-00002-of-00006.safetensors",
         
     | 
| 420 | 
         
            +
                "transformer.h.7.mlp.c_fc.bias": "model-00002-of-00006.safetensors",
         
     | 
| 421 | 
         
            +
                "transformer.h.7.mlp.c_fc.weight": "model-00002-of-00006.safetensors",
         
     | 
| 422 | 
         
            +
                "transformer.h.7.mlp.c_fc2.bias": "model-00002-of-00006.safetensors",
         
     | 
| 423 | 
         
            +
                "transformer.h.7.mlp.c_fc2.weight": "model-00002-of-00006.safetensors",
         
     | 
| 424 | 
         
            +
                "transformer.h.7.mlp.c_proj.bias": "model-00002-of-00006.safetensors",
         
     | 
| 425 | 
         
            +
                "transformer.h.7.mlp.c_proj.weight": "model-00002-of-00006.safetensors",
         
     | 
| 426 | 
         
            +
                "transformer.h.8.attn.c_attn.bias": "model-00002-of-00006.safetensors",
         
     | 
| 427 | 
         
            +
                "transformer.h.8.attn.c_attn.weight": "model-00002-of-00006.safetensors",
         
     | 
| 428 | 
         
            +
                "transformer.h.8.attn.c_proj.bias": "model-00002-of-00006.safetensors",
         
     | 
| 429 | 
         
            +
                "transformer.h.8.attn.c_proj.weight": "model-00002-of-00006.safetensors",
         
     | 
| 430 | 
         
            +
                "transformer.h.8.ln_1.bias": "model-00002-of-00006.safetensors",
         
     | 
| 431 | 
         
            +
                "transformer.h.8.ln_1.weight": "model-00002-of-00006.safetensors",
         
     | 
| 432 | 
         
            +
                "transformer.h.8.ln_2.bias": "model-00002-of-00006.safetensors",
         
     | 
| 433 | 
         
            +
                "transformer.h.8.ln_2.weight": "model-00002-of-00006.safetensors",
         
     | 
| 434 | 
         
            +
                "transformer.h.8.mlp.c_fc.bias": "model-00002-of-00006.safetensors",
         
     | 
| 435 | 
         
            +
                "transformer.h.8.mlp.c_fc.weight": "model-00002-of-00006.safetensors",
         
     | 
| 436 | 
         
            +
                "transformer.h.8.mlp.c_fc2.bias": "model-00002-of-00006.safetensors",
         
     | 
| 437 | 
         
            +
                "transformer.h.8.mlp.c_fc2.weight": "model-00002-of-00006.safetensors",
         
     | 
| 438 | 
         
            +
                "transformer.h.8.mlp.c_proj.bias": "model-00002-of-00006.safetensors",
         
     | 
| 439 | 
         
            +
                "transformer.h.8.mlp.c_proj.weight": "model-00002-of-00006.safetensors",
         
     | 
| 440 | 
         
            +
                "transformer.h.9.attn.c_attn.bias": "model-00002-of-00006.safetensors",
         
     | 
| 441 | 
         
            +
                "transformer.h.9.attn.c_attn.weight": "model-00002-of-00006.safetensors",
         
     | 
| 442 | 
         
            +
                "transformer.h.9.attn.c_proj.bias": "model-00002-of-00006.safetensors",
         
     | 
| 443 | 
         
            +
                "transformer.h.9.attn.c_proj.weight": "model-00002-of-00006.safetensors",
         
     | 
| 444 | 
         
            +
                "transformer.h.9.ln_1.bias": "model-00002-of-00006.safetensors",
         
     | 
| 445 | 
         
            +
                "transformer.h.9.ln_1.weight": "model-00002-of-00006.safetensors",
         
     | 
| 446 | 
         
            +
                "transformer.h.9.ln_2.bias": "model-00002-of-00006.safetensors",
         
     | 
| 447 | 
         
            +
                "transformer.h.9.ln_2.weight": "model-00002-of-00006.safetensors",
         
     | 
| 448 | 
         
            +
                "transformer.h.9.mlp.c_fc.bias": "model-00002-of-00006.safetensors",
         
     | 
| 449 | 
         
            +
                "transformer.h.9.mlp.c_fc.weight": "model-00002-of-00006.safetensors",
         
     | 
| 450 | 
         
            +
                "transformer.h.9.mlp.c_fc2.bias": "model-00002-of-00006.safetensors",
         
     | 
| 451 | 
         
            +
                "transformer.h.9.mlp.c_fc2.weight": "model-00002-of-00006.safetensors",
         
     | 
| 452 | 
         
            +
                "transformer.h.9.mlp.c_proj.bias": "model-00002-of-00006.safetensors",
         
     | 
| 453 | 
         
            +
                "transformer.h.9.mlp.c_proj.weight": "model-00002-of-00006.safetensors",
         
     | 
| 454 | 
         
            +
                "transformer.ln_f.bias": "model-00006-of-00006.safetensors",
         
     | 
| 455 | 
         
            +
                "transformer.ln_f.weight": "model-00006-of-00006.safetensors",
         
     | 
| 456 | 
         
            +
                "transformer.wte.weight": "model-00001-of-00006.safetensors"
         
     | 
| 457 | 
         
            +
              }
         
     | 
| 458 | 
         
            +
            }
         
     | 
    	
        modeling_crystalcoder.py
    ADDED
    
    | 
         @@ -0,0 +1,1671 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
             
     | 
| 2 | 
         
            +
            """ PyTorch CrystalCoder model."""
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            import math
         
     | 
| 5 | 
         
            +
            import os
         
     | 
| 6 | 
         
            +
            import warnings
         
     | 
| 7 | 
         
            +
            from typing import Optional, Tuple, Union
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            import torch
         
     | 
| 10 | 
         
            +
            from torch import Tensor, nn
         
     | 
| 11 | 
         
            +
            from torch.cuda.amp import autocast
         
     | 
| 12 | 
         
            +
            from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            from transformers.activations import ACT2FN
         
     | 
| 15 | 
         
            +
            from transformers.modeling_outputs import (
         
     | 
| 16 | 
         
            +
                BaseModelOutputWithPastAndCrossAttentions,
         
     | 
| 17 | 
         
            +
                CausalLMOutputWithCrossAttentions,
         
     | 
| 18 | 
         
            +
                QuestionAnsweringModelOutput,
         
     | 
| 19 | 
         
            +
                SequenceClassifierOutputWithPast,
         
     | 
| 20 | 
         
            +
                TokenClassifierOutput,
         
     | 
| 21 | 
         
            +
            )
         
     | 
| 22 | 
         
            +
            from transformers.modeling_utils import PreTrainedModel
         
     | 
| 23 | 
         
            +
            from transformers.pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
         
     | 
| 24 | 
         
            +
            from transformers.utils import (
         
     | 
| 25 | 
         
            +
                add_code_sample_docstrings,
         
     | 
| 26 | 
         
            +
                add_start_docstrings,
         
     | 
| 27 | 
         
            +
                add_start_docstrings_to_model_forward,
         
     | 
| 28 | 
         
            +
                logging,
         
     | 
| 29 | 
         
            +
            )
         
     | 
| 30 | 
         
            +
            from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
         
     | 
| 31 | 
         
            +
            from .configuration_crystalcoder import CrystalCoderConfig
         
     | 
| 32 | 
         
            +
            # from configuration_crystalcoder import CrystalCoderConfig
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
            logger = logging.get_logger(__name__)
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
            _CONFIG_FOR_DOC = "CrystalCoderConfig"
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
            def _duplicate_interleave(m):
         
     | 
| 42 | 
         
            +
                """
         
     | 
| 43 | 
         
            +
                A simple version of `torch.repeat_interleave` for duplicating a matrix while interleaving the copy.
         
     | 
| 44 | 
         
            +
                """
         
     | 
| 45 | 
         
            +
                dim0 = m.shape[0]
         
     | 
| 46 | 
         
            +
                m = m.view(-1, 1)  # flatten the matrix
         
     | 
| 47 | 
         
            +
                m = m.repeat(1, 2)  # repeat all elements into the 2nd dimension
         
     | 
| 48 | 
         
            +
                m = m.view(dim0, -1)  # reshape into a matrix, interleaving the copy
         
     | 
| 49 | 
         
            +
                return m
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
            class RotaryPositionEmbeddingHelper:
         
     | 
| 53 | 
         
            +
                def __init__(self, max_position_embeddings, rotary_dim, base=10000):
         
     | 
| 54 | 
         
            +
                    super(RotaryPositionEmbeddingHelper, self).__init__()
         
     | 
| 55 | 
         
            +
                    self.max_position_embeddings = max_position_embeddings
         
     | 
| 56 | 
         
            +
                    self.rotary_dim = rotary_dim
         
     | 
| 57 | 
         
            +
                    self.base = base
         
     | 
| 58 | 
         
            +
                    self.sin_cached = None
         
     | 
| 59 | 
         
            +
                    self.cos_cached = None
         
     | 
| 60 | 
         
            +
                    # self.offset = 0
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                def create_fixed_pos_emb(self, x, offset):
         
     | 
| 63 | 
         
            +
                    if (self.sin_cached is not None and self.cos_cached is not None
         
     | 
| 64 | 
         
            +
                        and x.device == self.sin_cached.device
         
     | 
| 65 | 
         
            +
                        and x.device == self.cos_cached.device
         
     | 
| 66 | 
         
            +
                        ):
         
     | 
| 67 | 
         
            +
                        sin, cos = self.sin_cached, self.cos_cached
         
     | 
| 68 | 
         
            +
                    else:    
         
     | 
| 69 | 
         
            +
                        # compute sin and cos for the fixed positional embeddings, using the maximum possible sequence length
         
     | 
| 70 | 
         
            +
                        # store as cache for future use
         
     | 
| 71 | 
         
            +
                        # self.offset = offset
         
     | 
| 72 | 
         
            +
                        device = x.device
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
                        inv_freq = 1.0 / (
         
     | 
| 75 | 
         
            +
                            self.base
         
     | 
| 76 | 
         
            +
                            ** (
         
     | 
| 77 | 
         
            +
                                torch.arange(0, self.rotary_dim, 2, device=device)
         
     | 
| 78 | 
         
            +
                                / self.rotary_dim
         
     | 
| 79 | 
         
            +
                            )
         
     | 
| 80 | 
         
            +
                        )
         
     | 
| 81 | 
         
            +
                        sinusoid_inp = torch.einsum(
         
     | 
| 82 | 
         
            +
                            "i , j -> i j",
         
     | 
| 83 | 
         
            +
                            torch.arange(self.max_position_embeddings, device=device),
         
     | 
| 84 | 
         
            +
                            inv_freq,
         
     | 
| 85 | 
         
            +
                        )
         
     | 
| 86 | 
         
            +
                        sin, cos = (
         
     | 
| 87 | 
         
            +
                            torch.sin(sinusoid_inp).to(x.dtype),
         
     | 
| 88 | 
         
            +
                            torch.cos(sinusoid_inp).to(x.dtype),
         
     | 
| 89 | 
         
            +
                        )
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                        sin, cos = map(_duplicate_interleave, (sin, cos))
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
                        self.sin_cached = sin
         
     | 
| 94 | 
         
            +
                        self.cos_cached = cos
         
     | 
| 95 | 
         
            +
                    
         
     | 
| 96 | 
         
            +
                    assert (
         
     | 
| 97 | 
         
            +
                        self.max_position_embeddings >= x.shape[1] + offset
         
     | 
| 98 | 
         
            +
                    ), "RoPE requires max position embeddings ({}) >= sequence length ({}) + offset ({})".format(
         
     | 
| 99 | 
         
            +
                        self.max_position_embeddings, x.shape[1], offset,
         
     | 
| 100 | 
         
            +
                    )
         
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
                    def slice_at_offset(t):
         
     | 
| 103 | 
         
            +
                        return t[None, offset : x.shape[1] + offset, None, :]
         
     | 
| 104 | 
         
            +
                    
         
     | 
| 105 | 
         
            +
                    sin, cos = map(slice_at_offset, (sin, cos))
         
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
                    return sin, cos
         
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
                def _apply_rotary_pos_emb(self, x, offset=0):
         
     | 
| 110 | 
         
            +
                    def rotate_every_two(x):
         
     | 
| 111 | 
         
            +
                        x1 = x[:, :, :, ::2]
         
     | 
| 112 | 
         
            +
                        x2 = x[:, :, :, 1::2]
         
     | 
| 113 | 
         
            +
                        x = torch.stack((-x2, x1), dim=-1)
         
     | 
| 114 | 
         
            +
                        # in einsum notation: rearrange(x, '... d j -> ... (d j)')
         
     | 
| 115 | 
         
            +
                        return x.flatten(-2)
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
                    sin, cos = self.create_fixed_pos_emb(x, offset)
         
     | 
| 118 | 
         
            +
                    l = x.size(1)
         
     | 
| 119 | 
         
            +
                    sin = sin[:, :l]
         
     | 
| 120 | 
         
            +
                    cos = cos[:, :l]
         
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
                    # einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2)
         
     | 
| 123 | 
         
            +
                    return (x * cos) + (rotate_every_two(x) * sin)
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
                def rotate_tensor(self, x, offset=0):
         
     | 
| 126 | 
         
            +
                    assert (
         
     | 
| 127 | 
         
            +
                        len(x.shape) == 4
         
     | 
| 128 | 
         
            +
                    ), "Tensor should be of shape [batch_size, seq_length, num_heads, head_dim] !"
         
     | 
| 129 | 
         
            +
                    x_rotary = x[:, :, :, : self.rotary_dim]
         
     | 
| 130 | 
         
            +
                    x_pass = x[:, :, :, self.rotary_dim :]
         
     | 
| 131 | 
         
            +
                    x_rotated = self._apply_rotary_pos_emb(
         
     | 
| 132 | 
         
            +
                        x_rotary, offset=offset
         
     | 
| 133 | 
         
            +
                    )
         
     | 
| 134 | 
         
            +
                    x = torch.cat([x_rotated, x_pass], dim=-1)
         
     | 
| 135 | 
         
            +
                    return x
         
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
            class SwiGLUActivation(nn.Module):
         
     | 
| 139 | 
         
            +
                def forward(self, x1: Tensor, x2: Tensor) -> Tensor:
         
     | 
| 140 | 
         
            +
                    return x1 * nn.functional.silu(x2)
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
            class AlibiPositionEmbeddingLayer(nn.Module):
         
     | 
| 144 | 
         
            +
                def __init__(self, num_heads):
         
     | 
| 145 | 
         
            +
                    super(AlibiPositionEmbeddingLayer, self).__init__()
         
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
                    self.num_heads = num_heads
         
     | 
| 148 | 
         
            +
                    slopes = torch.tensor(AlibiPositionEmbeddingLayer._get_alibi_slopes(num_heads)).unsqueeze(-1)
         
     | 
| 149 | 
         
            +
                    self.slopes = nn.parameter.Parameter(slopes, requires_grad=False)
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
                def forward(
         
     | 
| 152 | 
         
            +
                    self,
         
     | 
| 153 | 
         
            +
                    seq_length,
         
     | 
| 154 | 
         
            +
                    key_length,
         
     | 
| 155 | 
         
            +
                    cached_qk_len,
         
     | 
| 156 | 
         
            +
                ):
         
     | 
| 157 | 
         
            +
                    context_position = torch.arange(
         
     | 
| 158 | 
         
            +
                        cached_qk_len, cached_qk_len + seq_length, device=self.slopes.device
         
     | 
| 159 | 
         
            +
                    )[:, None]
         
     | 
| 160 | 
         
            +
                    memory_position = torch.arange(
         
     | 
| 161 | 
         
            +
                        key_length + cached_qk_len, device=self.slopes.device
         
     | 
| 162 | 
         
            +
                    )[None, :]
         
     | 
| 163 | 
         
            +
                    relative_position = memory_position - context_position
         
     | 
| 164 | 
         
            +
                    relative_position = torch.abs(relative_position).unsqueeze(0).expand(self.num_heads, -1, -1)
         
     | 
| 165 | 
         
            +
                    alibi = (self.slopes * -1.0).unsqueeze(1) * relative_position
         
     | 
| 166 | 
         
            +
                    return alibi
         
     | 
| 167 | 
         
            +
             
     | 
| 168 | 
         
            +
                @staticmethod
         
     | 
| 169 | 
         
            +
                def _get_alibi_slopes(n):
         
     | 
| 170 | 
         
            +
                    def get_slopes_power_of_2(n):
         
     | 
| 171 | 
         
            +
                        start = 2 ** (-(2 ** -(math.log2(n) - 3)))
         
     | 
| 172 | 
         
            +
                        ratio = start
         
     | 
| 173 | 
         
            +
                        return [start * ratio**i for i in range(n)]
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
                    if math.log2(n).is_integer():
         
     | 
| 176 | 
         
            +
                        return get_slopes_power_of_2(
         
     | 
| 177 | 
         
            +
                            n
         
     | 
| 178 | 
         
            +
                        )  # In the paper, we only train models that have 2^a heads for some a. This function has
         
     | 
| 179 | 
         
            +
                    else:  # some good properties that only occur when the input is a power of 2. To maintain that even
         
     | 
| 180 | 
         
            +
                        closest_power_of_2 = 2 ** math.floor(
         
     | 
| 181 | 
         
            +
                            math.log2(n)
         
     | 
| 182 | 
         
            +
                        )  # when the number of heads is not a power of 2, we use this workaround.
         
     | 
| 183 | 
         
            +
                        return (
         
     | 
| 184 | 
         
            +
                            get_slopes_power_of_2(closest_power_of_2)
         
     | 
| 185 | 
         
            +
                            + AlibiPositionEmbeddingLayer._get_alibi_slopes(2 * closest_power_of_2)[0::2][: n - closest_power_of_2]
         
     | 
| 186 | 
         
            +
                        )
         
     | 
| 187 | 
         
            +
             
     | 
| 188 | 
         
            +
             
     | 
| 189 | 
         
            +
            def load_tf_weights_in_crystalcoder(model, config, crystalcoder_checkpoint_path):
         
     | 
| 190 | 
         
            +
                """Load tf checkpoints in a pytorch model"""
         
     | 
| 191 | 
         
            +
                try:
         
     | 
| 192 | 
         
            +
                    import re
         
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
                    import tensorflow as tf
         
     | 
| 195 | 
         
            +
                except ImportError:
         
     | 
| 196 | 
         
            +
                    logger.error(
         
     | 
| 197 | 
         
            +
                        "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
         
     | 
| 198 | 
         
            +
                        "https://www.tensorflow.org/install/ for installation instructions."
         
     | 
| 199 | 
         
            +
                    )
         
     | 
| 200 | 
         
            +
                    raise
         
     | 
| 201 | 
         
            +
                tf_path = os.path.abspath(crystalcoder_checkpoint_path)
         
     | 
| 202 | 
         
            +
                logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
         
     | 
| 203 | 
         
            +
                # Load weights from TF model
         
     | 
| 204 | 
         
            +
                init_vars = tf.train.list_variables(tf_path)
         
     | 
| 205 | 
         
            +
                names = []
         
     | 
| 206 | 
         
            +
                arrays = []
         
     | 
| 207 | 
         
            +
                for name, shape in init_vars:
         
     | 
| 208 | 
         
            +
                    logger.info(f"Loading TF weight {name} with shape {shape}")
         
     | 
| 209 | 
         
            +
                    array = tf.train.load_variable(tf_path, name)
         
     | 
| 210 | 
         
            +
                    names.append(name)
         
     | 
| 211 | 
         
            +
                    arrays.append(array.squeeze())
         
     | 
| 212 | 
         
            +
             
     | 
| 213 | 
         
            +
                for name, array in zip(names, arrays):
         
     | 
| 214 | 
         
            +
                    name = name[6:]  # skip "model/"
         
     | 
| 215 | 
         
            +
                    name = name.split("/")
         
     | 
| 216 | 
         
            +
                    pointer = model
         
     | 
| 217 | 
         
            +
                    for m_name in name:
         
     | 
| 218 | 
         
            +
                        if re.fullmatch(r"[A-Za-z]+\d+", m_name):
         
     | 
| 219 | 
         
            +
                            scope_names = re.split(r"(\d+)", m_name)
         
     | 
| 220 | 
         
            +
                        else:
         
     | 
| 221 | 
         
            +
                            scope_names = [m_name]
         
     | 
| 222 | 
         
            +
                        if scope_names[0] == "w" or scope_names[0] == "g":
         
     | 
| 223 | 
         
            +
                            pointer = getattr(pointer, "weight")
         
     | 
| 224 | 
         
            +
                        elif scope_names[0] == "b":
         
     | 
| 225 | 
         
            +
                            pointer = getattr(pointer, "bias")
         
     | 
| 226 | 
         
            +
                        elif scope_names[0] == "wpe" or scope_names[0] == "wte":
         
     | 
| 227 | 
         
            +
                            pointer = getattr(pointer, scope_names[0])
         
     | 
| 228 | 
         
            +
                            pointer = getattr(pointer, "weight")
         
     | 
| 229 | 
         
            +
                        else:
         
     | 
| 230 | 
         
            +
                            pointer = getattr(pointer, scope_names[0])
         
     | 
| 231 | 
         
            +
                        if len(scope_names) >= 2:
         
     | 
| 232 | 
         
            +
                            num = int(scope_names[1])
         
     | 
| 233 | 
         
            +
                            pointer = pointer[num]
         
     | 
| 234 | 
         
            +
                    try:
         
     | 
| 235 | 
         
            +
                        assert (
         
     | 
| 236 | 
         
            +
                            pointer.shape == array.shape
         
     | 
| 237 | 
         
            +
                        ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
         
     | 
| 238 | 
         
            +
                    except AssertionError as e:
         
     | 
| 239 | 
         
            +
                        e.args += (pointer.shape, array.shape)
         
     | 
| 240 | 
         
            +
                        raise
         
     | 
| 241 | 
         
            +
                    logger.info(f"Initialize PyTorch weight {name}")
         
     | 
| 242 | 
         
            +
                    pointer.data = torch.from_numpy(array)
         
     | 
| 243 | 
         
            +
                return model
         
     | 
| 244 | 
         
            +
             
     | 
| 245 | 
         
            +
             
     | 
| 246 | 
         
            +
            class CrystalCoderAttention(nn.Module):
         
     | 
| 247 | 
         
            +
                def __init__(self, config, is_cross_attention=False, layer_idx=None):
         
     | 
| 248 | 
         
            +
                    super().__init__()
         
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
                    max_positions = config.max_position_embeddings
         
     | 
| 251 | 
         
            +
                    self.register_buffer(
         
     | 
| 252 | 
         
            +
                        "bias",
         
     | 
| 253 | 
         
            +
                        torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
         
     | 
| 254 | 
         
            +
                            1, 1, max_positions, max_positions
         
     | 
| 255 | 
         
            +
                        ),
         
     | 
| 256 | 
         
            +
                        persistent=False,
         
     | 
| 257 | 
         
            +
                    )
         
     | 
| 258 | 
         
            +
                    self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
         
     | 
| 259 | 
         
            +
             
     | 
| 260 | 
         
            +
                    self.embed_dim = config.hidden_size
         
     | 
| 261 | 
         
            +
                    self.num_heads = config.num_attention_heads
         
     | 
| 262 | 
         
            +
                    self.head_dim = self.embed_dim // self.num_heads
         
     | 
| 263 | 
         
            +
                    self.split_size = self.embed_dim
         
     | 
| 264 | 
         
            +
                    if self.head_dim * self.num_heads != self.embed_dim:
         
     | 
| 265 | 
         
            +
                        raise ValueError(
         
     | 
| 266 | 
         
            +
                            f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
         
     | 
| 267 | 
         
            +
                            f" {self.num_heads})."
         
     | 
| 268 | 
         
            +
                        )
         
     | 
| 269 | 
         
            +
                    if config.position_embedding_type == "rotary":
         
     | 
| 270 | 
         
            +
                        rotary_dim = config.rotary_dim or self.head_dim
         
     | 
| 271 | 
         
            +
                        self.rope_helper = RotaryPositionEmbeddingHelper(max_positions, rotary_dim)
         
     | 
| 272 | 
         
            +
                    else:
         
     | 
| 273 | 
         
            +
                        self.rope_helper = None
         
     | 
| 274 | 
         
            +
             
     | 
| 275 | 
         
            +
             
     | 
| 276 | 
         
            +
                    self.scale_attn_weights = config.scale_attn_weights
         
     | 
| 277 | 
         
            +
                    self.is_cross_attention = is_cross_attention
         
     | 
| 278 | 
         
            +
             
     | 
| 279 | 
         
            +
                    # Layer-wise attention scaling, reordering, and upcasting
         
     | 
| 280 | 
         
            +
                    self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
         
     | 
| 281 | 
         
            +
                    self.layer_idx = layer_idx
         
     | 
| 282 | 
         
            +
                    self.reorder_and_upcast_attn = config.reorder_and_upcast_attn
         
     | 
| 283 | 
         
            +
             
     | 
| 284 | 
         
            +
                    if self.is_cross_attention:
         
     | 
| 285 | 
         
            +
                        self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim)
         
     | 
| 286 | 
         
            +
                        self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
         
     | 
| 287 | 
         
            +
                    else:
         
     | 
| 288 | 
         
            +
                        self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
         
     | 
| 289 | 
         
            +
                    self.c_proj = Conv1D(self.embed_dim, self.embed_dim)
         
     | 
| 290 | 
         
            +
             
     | 
| 291 | 
         
            +
                    self.attn_dropout = nn.Dropout(config.attn_pdrop)
         
     | 
| 292 | 
         
            +
                    self.resid_dropout = nn.Dropout(config.resid_pdrop)
         
     | 
| 293 | 
         
            +
             
     | 
| 294 | 
         
            +
                    self.pruned_heads = set()
         
     | 
| 295 | 
         
            +
             
     | 
| 296 | 
         
            +
                    self.attn_scale_power = 1.0 if config.mup_scale_qk_dot_by_d else 0.5
         
     | 
| 297 | 
         
            +
             
     | 
| 298 | 
         
            +
                def prune_heads(self, heads):
         
     | 
| 299 | 
         
            +
                    if len(heads) == 0:
         
     | 
| 300 | 
         
            +
                        return
         
     | 
| 301 | 
         
            +
                    heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads)
         
     | 
| 302 | 
         
            +
                    index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
         
     | 
| 303 | 
         
            +
             
     | 
| 304 | 
         
            +
                    # Prune conv1d layers
         
     | 
| 305 | 
         
            +
                    self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
         
     | 
| 306 | 
         
            +
                    self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
         
     | 
| 307 | 
         
            +
             
     | 
| 308 | 
         
            +
                    # Update hyper params
         
     | 
| 309 | 
         
            +
                    self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads))
         
     | 
| 310 | 
         
            +
                    self.num_heads = self.num_heads - len(heads)
         
     | 
| 311 | 
         
            +
                    self.pruned_heads = self.pruned_heads.union(heads)
         
     | 
| 312 | 
         
            +
             
     | 
| 313 | 
         
            +
                def _attn(self, query, key, value, attention_mask=None, head_mask=None, position_bias=None):
         
     | 
| 314 | 
         
            +
                    attn_weights = torch.matmul(query, key.transpose(-1, -2))
         
     | 
| 315 | 
         
            +
             
     | 
| 316 | 
         
            +
                    if self.scale_attn_weights:
         
     | 
| 317 | 
         
            +
                        attn_weights = attn_weights / torch.full(
         
     | 
| 318 | 
         
            +
                            [], value.size(-1) ** self.attn_scale_power, dtype=attn_weights.dtype, device=attn_weights.device
         
     | 
| 319 | 
         
            +
                        )
         
     | 
| 320 | 
         
            +
             
     | 
| 321 | 
         
            +
                    # Layer-wise attention scaling
         
     | 
| 322 | 
         
            +
                    if self.scale_attn_by_inverse_layer_idx:
         
     | 
| 323 | 
         
            +
                        attn_weights = attn_weights / float(self.layer_idx + 1)
         
     | 
| 324 | 
         
            +
             
     | 
| 325 | 
         
            +
                    if not self.is_cross_attention:
         
     | 
| 326 | 
         
            +
                        # if only "normal" attention layer implements causal mask
         
     | 
| 327 | 
         
            +
                        query_length, key_length = query.size(-2), key.size(-2)
         
     | 
| 328 | 
         
            +
                        causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
         
     | 
| 329 | 
         
            +
                        mask_value = torch.finfo(attn_weights.dtype).min
         
     | 
| 330 | 
         
            +
                        # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
         
     | 
| 331 | 
         
            +
                        # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
         
     | 
| 332 | 
         
            +
                        mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
         
     | 
| 333 | 
         
            +
                        attn_weights = torch.where(causal_mask, attn_weights.to(attn_weights.dtype), mask_value)
         
     | 
| 334 | 
         
            +
             
     | 
| 335 | 
         
            +
                    if attention_mask is not None:
         
     | 
| 336 | 
         
            +
                        # Apply the attention mask
         
     | 
| 337 | 
         
            +
                        attn_weights = attn_weights + attention_mask
         
     | 
| 338 | 
         
            +
             
     | 
| 339 | 
         
            +
                    if position_bias is not None:
         
     | 
| 340 | 
         
            +
                        attn_weights += position_bias.type_as(attn_weights).unsqueeze(0)
         
     | 
| 341 | 
         
            +
                    attn_weights = nn.functional.softmax(attn_weights, dim=-1)
         
     | 
| 342 | 
         
            +
             
     | 
| 343 | 
         
            +
                    # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
         
     | 
| 344 | 
         
            +
                    attn_weights = attn_weights.type(value.dtype)
         
     | 
| 345 | 
         
            +
                    attn_weights = self.attn_dropout(attn_weights)
         
     | 
| 346 | 
         
            +
             
     | 
| 347 | 
         
            +
                    # Mask heads if we want to
         
     | 
| 348 | 
         
            +
                    if head_mask is not None:
         
     | 
| 349 | 
         
            +
                        attn_weights = attn_weights * head_mask
         
     | 
| 350 | 
         
            +
             
     | 
| 351 | 
         
            +
                    attn_output = torch.matmul(attn_weights, value)
         
     | 
| 352 | 
         
            +
             
     | 
| 353 | 
         
            +
                    return attn_output, attn_weights
         
     | 
| 354 | 
         
            +
             
     | 
| 355 | 
         
            +
                def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None, position_bias=None):
         
     | 
| 356 | 
         
            +
                    # Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM)
         
     | 
| 357 | 
         
            +
                    bsz, num_heads, q_seq_len, dk = query.size()
         
     | 
| 358 | 
         
            +
                    _, _, k_seq_len, _ = key.size()
         
     | 
| 359 | 
         
            +
             
     | 
| 360 | 
         
            +
                    # Preallocate attn_weights for `baddbmm`
         
     | 
| 361 | 
         
            +
                    attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device)
         
     | 
| 362 | 
         
            +
             
     | 
| 363 | 
         
            +
                    # Compute Scale Factor
         
     | 
| 364 | 
         
            +
                    scale_factor = 1.0
         
     | 
| 365 | 
         
            +
                    if self.scale_attn_weights:
         
     | 
| 366 | 
         
            +
                        scale_factor /= float(value.size(-1)) ** self.attn_scale_power
         
     | 
| 367 | 
         
            +
             
     | 
| 368 | 
         
            +
                    if self.scale_attn_by_inverse_layer_idx:
         
     | 
| 369 | 
         
            +
                        scale_factor /= float(self.layer_idx + 1)
         
     | 
| 370 | 
         
            +
             
     | 
| 371 | 
         
            +
                    # Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk))
         
     | 
| 372 | 
         
            +
                    with autocast(enabled=False):
         
     | 
| 373 | 
         
            +
                        q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len)
         
     | 
| 374 | 
         
            +
                        attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor)
         
     | 
| 375 | 
         
            +
                        attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
         
     | 
| 376 | 
         
            +
             
     | 
| 377 | 
         
            +
                    if not self.is_cross_attention:
         
     | 
| 378 | 
         
            +
                        # if only "normal" attention layer implements causal mask
         
     | 
| 379 | 
         
            +
                        query_length, key_length = query.size(-2), key.size(-2)
         
     | 
| 380 | 
         
            +
                        causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
         
     | 
| 381 | 
         
            +
                        mask_value = torch.finfo(attn_weights.dtype).min
         
     | 
| 382 | 
         
            +
                        # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
         
     | 
| 383 | 
         
            +
                        # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
         
     | 
| 384 | 
         
            +
                        mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
         
     | 
| 385 | 
         
            +
                        attn_weights = torch.where(causal_mask, attn_weights, mask_value)
         
     | 
| 386 | 
         
            +
             
     | 
| 387 | 
         
            +
                    if attention_mask is not None:
         
     | 
| 388 | 
         
            +
                        # Apply the attention mask
         
     | 
| 389 | 
         
            +
                        attn_weights = attn_weights + attention_mask
         
     | 
| 390 | 
         
            +
             
     | 
| 391 | 
         
            +
                    if position_bias is not None:
         
     | 
| 392 | 
         
            +
                        attn_weights += position_bias.type_as(attn_weights).unsqueeze(0)
         
     | 
| 393 | 
         
            +
                    attn_weights = nn.functional.softmax(attn_weights, dim=-1)
         
     | 
| 394 | 
         
            +
             
     | 
| 395 | 
         
            +
                    # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise
         
     | 
| 396 | 
         
            +
                    if attn_weights.dtype != torch.float32:
         
     | 
| 397 | 
         
            +
                        raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32")
         
     | 
| 398 | 
         
            +
                    attn_weights = attn_weights.type(value.dtype)
         
     | 
| 399 | 
         
            +
                    attn_weights = self.attn_dropout(attn_weights)
         
     | 
| 400 | 
         
            +
             
     | 
| 401 | 
         
            +
                    # Mask heads if we want to
         
     | 
| 402 | 
         
            +
                    if head_mask is not None:
         
     | 
| 403 | 
         
            +
                        attn_weights = attn_weights * head_mask
         
     | 
| 404 | 
         
            +
             
     | 
| 405 | 
         
            +
                    attn_output = torch.matmul(attn_weights, value)
         
     | 
| 406 | 
         
            +
             
     | 
| 407 | 
         
            +
                    return attn_output, attn_weights
         
     | 
| 408 | 
         
            +
             
     | 
| 409 | 
         
            +
                def _split_heads(self, tensor, num_heads, attn_head_size):
         
     | 
| 410 | 
         
            +
                    """
         
     | 
| 411 | 
         
            +
                    Splits hidden_size dim into attn_head_size and num_heads
         
     | 
| 412 | 
         
            +
                    """
         
     | 
| 413 | 
         
            +
                    new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
         
     | 
| 414 | 
         
            +
                    tensor = tensor.view(new_shape)
         
     | 
| 415 | 
         
            +
                    return tensor
         
     | 
| 416 | 
         
            +
             
     | 
| 417 | 
         
            +
                def _merge_heads(self, tensor, num_heads, attn_head_size):
         
     | 
| 418 | 
         
            +
                    """
         
     | 
| 419 | 
         
            +
                    Merges attn_head_size dim and num_attn_heads dim into hidden_size
         
     | 
| 420 | 
         
            +
                    """
         
     | 
| 421 | 
         
            +
                    tensor = tensor.permute(0, 2, 1, 3).contiguous()
         
     | 
| 422 | 
         
            +
                    new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
         
     | 
| 423 | 
         
            +
                    return tensor.view(new_shape)
         
     | 
| 424 | 
         
            +
             
     | 
| 425 | 
         
            +
                def forward(
         
     | 
| 426 | 
         
            +
                    self,
         
     | 
| 427 | 
         
            +
                    hidden_states: Optional[Tuple[torch.FloatTensor]],
         
     | 
| 428 | 
         
            +
                    layer_past: Optional[Tuple[torch.Tensor]] = None,
         
     | 
| 429 | 
         
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 430 | 
         
            +
                    head_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 431 | 
         
            +
                    encoder_hidden_states: Optional[torch.Tensor] = None,
         
     | 
| 432 | 
         
            +
                    encoder_attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 433 | 
         
            +
                    use_cache: Optional[bool] = False,
         
     | 
| 434 | 
         
            +
                    output_attentions: Optional[bool] = False,
         
     | 
| 435 | 
         
            +
                    position_bias: Optional[torch.FloatTensor] = None,
         
     | 
| 436 | 
         
            +
                ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
         
     | 
| 437 | 
         
            +
                    if encoder_hidden_states is not None:
         
     | 
| 438 | 
         
            +
                        if not hasattr(self, "q_attn"):
         
     | 
| 439 | 
         
            +
                            raise ValueError(
         
     | 
| 440 | 
         
            +
                                "If class is used as cross attention, the weights `q_attn` have to be defined. "
         
     | 
| 441 | 
         
            +
                                "Please make sure to instantiate class with `CrystalCoderAttention(..., is_cross_attention=True)`."
         
     | 
| 442 | 
         
            +
                            )
         
     | 
| 443 | 
         
            +
             
     | 
| 444 | 
         
            +
                        query = self.q_attn(hidden_states)
         
     | 
| 445 | 
         
            +
                        key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
         
     | 
| 446 | 
         
            +
                        attention_mask = encoder_attention_mask
         
     | 
| 447 | 
         
            +
                    else:
         
     | 
| 448 | 
         
            +
                        query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
         
     | 
| 449 | 
         
            +
             
     | 
| 450 | 
         
            +
                    query = self._split_heads(query, self.num_heads, self.head_dim)
         
     | 
| 451 | 
         
            +
                    key = self._split_heads(key, self.num_heads, self.head_dim)
         
     | 
| 452 | 
         
            +
                    value = self._split_heads(value, self.num_heads, self.head_dim)
         
     | 
| 453 | 
         
            +
             
     | 
| 454 | 
         
            +
                    # apply rope and transpose
         
     | 
| 455 | 
         
            +
                    if self.rope_helper is not None:
         
     | 
| 456 | 
         
            +
                        len_past = (layer_past and layer_past[0].size(-2)) or 0
         
     | 
| 457 | 
         
            +
                        query = self.rope_helper.rotate_tensor(query, offset=len_past)
         
     | 
| 458 | 
         
            +
                        key = self.rope_helper.rotate_tensor(key, offset=len_past)
         
     | 
| 459 | 
         
            +
                    query = query.transpose(1, 2)
         
     | 
| 460 | 
         
            +
                    key = key.transpose(1, 2)
         
     | 
| 461 | 
         
            +
                    value = value.transpose(1, 2)
         
     | 
| 462 | 
         
            +
             
     | 
| 463 | 
         
            +
                    if layer_past is not None:
         
     | 
| 464 | 
         
            +
                        past_key, past_value = layer_past
         
     | 
| 465 | 
         
            +
                        key = torch.cat((past_key, key), dim=-2)
         
     | 
| 466 | 
         
            +
                        value = torch.cat((past_value, value), dim=-2)
         
     | 
| 467 | 
         
            +
             
     | 
| 468 | 
         
            +
                    if use_cache is True:
         
     | 
| 469 | 
         
            +
                        present = (key, value)
         
     | 
| 470 | 
         
            +
                    else:
         
     | 
| 471 | 
         
            +
                        present = None
         
     | 
| 472 | 
         
            +
             
     | 
| 473 | 
         
            +
                    if self.reorder_and_upcast_attn:
         
     | 
| 474 | 
         
            +
                        attn_output, attn_weights = self._upcast_and_reordered_attn(
         
     | 
| 475 | 
         
            +
                            query, key, value, attention_mask, head_mask, position_bias
         
     | 
| 476 | 
         
            +
                        )
         
     | 
| 477 | 
         
            +
                    else:
         
     | 
| 478 | 
         
            +
                        attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask, position_bias)
         
     | 
| 479 | 
         
            +
             
     | 
| 480 | 
         
            +
                    attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
         
     | 
| 481 | 
         
            +
                    attn_output = self.c_proj(attn_output)
         
     | 
| 482 | 
         
            +
                    attn_output = self.resid_dropout(attn_output)
         
     | 
| 483 | 
         
            +
             
     | 
| 484 | 
         
            +
                    outputs = (attn_output, present)
         
     | 
| 485 | 
         
            +
                    if output_attentions:
         
     | 
| 486 | 
         
            +
                        outputs += (attn_weights,)
         
     | 
| 487 | 
         
            +
             
     | 
| 488 | 
         
            +
                    return outputs  # a, present, (attentions)
         
     | 
| 489 | 
         
            +
             
     | 
| 490 | 
         
            +
             
     | 
| 491 | 
         
            +
            class CrystalCoderMLP(nn.Module):
         
     | 
| 492 | 
         
            +
                def __init__(self, intermediate_size, config):
         
     | 
| 493 | 
         
            +
                    super().__init__()
         
     | 
| 494 | 
         
            +
                    embed_dim = config.hidden_size
         
     | 
| 495 | 
         
            +
                    self.swiglu = config.activation_function == "swiglu"
         
     | 
| 496 | 
         
            +
                    self.c_fc = Conv1D(intermediate_size, embed_dim)
         
     | 
| 497 | 
         
            +
                    self.c_fc2 = Conv1D(intermediate_size, embed_dim) if self.swiglu else None
         
     | 
| 498 | 
         
            +
                    self.c_proj = Conv1D(embed_dim, intermediate_size)
         
     | 
| 499 | 
         
            +
                    self.act = SwiGLUActivation() if self.swiglu else ACT2FN[config.activation_function]
         
     | 
| 500 | 
         
            +
                    self.dropout = nn.Dropout(config.resid_pdrop)
         
     | 
| 501 | 
         
            +
             
     | 
| 502 | 
         
            +
                def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
         
     | 
| 503 | 
         
            +
                    if self.swiglu:
         
     | 
| 504 | 
         
            +
                        hidden_states2 = self.c_fc2(hidden_states)
         
     | 
| 505 | 
         
            +
                    hidden_states = self.c_fc(hidden_states)
         
     | 
| 506 | 
         
            +
                    hidden_states = self.act(hidden_states, hidden_states2) if self.swiglu else self.act(hidden_states)
         
     | 
| 507 | 
         
            +
                    hidden_states = self.c_proj(hidden_states)
         
     | 
| 508 | 
         
            +
                    hidden_states = self.dropout(hidden_states)
         
     | 
| 509 | 
         
            +
                    return hidden_states
         
     | 
| 510 | 
         
            +
             
     | 
| 511 | 
         
            +
             
     | 
| 512 | 
         
            +
            class CrystalCoderBlock(nn.Module):
         
     | 
| 513 | 
         
            +
                def __init__(self, config, layer_idx=None):
         
     | 
| 514 | 
         
            +
                    super().__init__()
         
     | 
| 515 | 
         
            +
                    hidden_size = config.hidden_size
         
     | 
| 516 | 
         
            +
                    inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
         
     | 
| 517 | 
         
            +
             
     | 
| 518 | 
         
            +
                    self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
         
     | 
| 519 | 
         
            +
                    self.attn = CrystalCoderAttention(config, layer_idx=layer_idx)
         
     | 
| 520 | 
         
            +
                    self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
         
     | 
| 521 | 
         
            +
             
     | 
| 522 | 
         
            +
                    if config.add_cross_attention:
         
     | 
| 523 | 
         
            +
                        self.crossattention = CrystalCoderAttention(config, is_cross_attention=True, layer_idx=layer_idx)
         
     | 
| 524 | 
         
            +
                        self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
         
     | 
| 525 | 
         
            +
             
     | 
| 526 | 
         
            +
                    self.mlp = CrystalCoderMLP(inner_dim, config)
         
     | 
| 527 | 
         
            +
             
     | 
| 528 | 
         
            +
                def forward(
         
     | 
| 529 | 
         
            +
                    self,
         
     | 
| 530 | 
         
            +
                    hidden_states: Optional[Tuple[torch.FloatTensor]],
         
     | 
| 531 | 
         
            +
                    layer_past: Optional[Tuple[torch.Tensor]] = None,
         
     | 
| 532 | 
         
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 533 | 
         
            +
                    head_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 534 | 
         
            +
                    encoder_hidden_states: Optional[torch.Tensor] = None,
         
     | 
| 535 | 
         
            +
                    encoder_attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 536 | 
         
            +
                    use_cache: Optional[bool] = False,
         
     | 
| 537 | 
         
            +
                    output_attentions: Optional[bool] = False,
         
     | 
| 538 | 
         
            +
                    position_bias: Optional[torch.FloatTensor] = None,
         
     | 
| 539 | 
         
            +
                ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
         
     | 
| 540 | 
         
            +
                    residual = hidden_states
         
     | 
| 541 | 
         
            +
                    hidden_states = self.ln_1(hidden_states)
         
     | 
| 542 | 
         
            +
                    attn_outputs = self.attn(
         
     | 
| 543 | 
         
            +
                        hidden_states,
         
     | 
| 544 | 
         
            +
                        layer_past=layer_past,
         
     | 
| 545 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 546 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 547 | 
         
            +
                        use_cache=use_cache,
         
     | 
| 548 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 549 | 
         
            +
                        position_bias=position_bias,
         
     | 
| 550 | 
         
            +
                    )
         
     | 
| 551 | 
         
            +
                    attn_output = attn_outputs[0]  # output_attn: a, present, (attentions)
         
     | 
| 552 | 
         
            +
                    outputs = attn_outputs[1:]
         
     | 
| 553 | 
         
            +
                    # residual connection
         
     | 
| 554 | 
         
            +
                    hidden_states = attn_output + residual
         
     | 
| 555 | 
         
            +
             
     | 
| 556 | 
         
            +
                    if encoder_hidden_states is not None:
         
     | 
| 557 | 
         
            +
                        # add one self-attention block for cross-attention
         
     | 
| 558 | 
         
            +
                        if not hasattr(self, "crossattention"):
         
     | 
| 559 | 
         
            +
                            raise ValueError(
         
     | 
| 560 | 
         
            +
                                f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
         
     | 
| 561 | 
         
            +
                                "cross-attention layers by setting `config.add_cross_attention=True`"
         
     | 
| 562 | 
         
            +
                            )
         
     | 
| 563 | 
         
            +
                        residual = hidden_states
         
     | 
| 564 | 
         
            +
                        hidden_states = self.ln_cross_attn(hidden_states)
         
     | 
| 565 | 
         
            +
                        cross_attn_outputs = self.crossattention(
         
     | 
| 566 | 
         
            +
                            hidden_states,
         
     | 
| 567 | 
         
            +
                            attention_mask=attention_mask,
         
     | 
| 568 | 
         
            +
                            head_mask=head_mask,
         
     | 
| 569 | 
         
            +
                            encoder_hidden_states=encoder_hidden_states,
         
     | 
| 570 | 
         
            +
                            encoder_attention_mask=encoder_attention_mask,
         
     | 
| 571 | 
         
            +
                            output_attentions=output_attentions,
         
     | 
| 572 | 
         
            +
                            position_bias=position_bias,
         
     | 
| 573 | 
         
            +
                        )
         
     | 
| 574 | 
         
            +
                        attn_output = cross_attn_outputs[0]
         
     | 
| 575 | 
         
            +
                        # residual connection
         
     | 
| 576 | 
         
            +
                        hidden_states = residual + attn_output
         
     | 
| 577 | 
         
            +
                        outputs = outputs + cross_attn_outputs[2:]  # add cross attentions if we output attention weights
         
     | 
| 578 | 
         
            +
             
     | 
| 579 | 
         
            +
                    residual = hidden_states
         
     | 
| 580 | 
         
            +
                    hidden_states = self.ln_2(hidden_states)
         
     | 
| 581 | 
         
            +
                    feed_forward_hidden_states = self.mlp(hidden_states)
         
     | 
| 582 | 
         
            +
                    # residual connection
         
     | 
| 583 | 
         
            +
                    hidden_states = residual + feed_forward_hidden_states
         
     | 
| 584 | 
         
            +
             
     | 
| 585 | 
         
            +
                    if use_cache:
         
     | 
| 586 | 
         
            +
                        outputs = (hidden_states,) + outputs
         
     | 
| 587 | 
         
            +
                    else:
         
     | 
| 588 | 
         
            +
                        outputs = (hidden_states,) + outputs[1:]
         
     | 
| 589 | 
         
            +
             
     | 
| 590 | 
         
            +
                    return outputs  # hidden_states, present, (attentions, cross_attentions)
         
     | 
| 591 | 
         
            +
             
     | 
| 592 | 
         
            +
             
     | 
| 593 | 
         
            +
            class CrystalCoderPreTrainedModel(PreTrainedModel):
         
     | 
| 594 | 
         
            +
                """
         
     | 
| 595 | 
         
            +
                An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
         
     | 
| 596 | 
         
            +
                models.
         
     | 
| 597 | 
         
            +
                """
         
     | 
| 598 | 
         
            +
             
     | 
| 599 | 
         
            +
                config_class = CrystalCoderConfig
         
     | 
| 600 | 
         
            +
                load_tf_weights = load_tf_weights_in_crystalcoder
         
     | 
| 601 | 
         
            +
                base_model_prefix = "transformer"
         
     | 
| 602 | 
         
            +
                is_parallelizable = True
         
     | 
| 603 | 
         
            +
                supports_gradient_checkpointing = True
         
     | 
| 604 | 
         
            +
                _no_split_modules = ["CrystalCoderBlock"]
         
     | 
| 605 | 
         
            +
                _skip_keys_device_placement = "past_key_values"
         
     | 
| 606 | 
         
            +
             
     | 
| 607 | 
         
            +
                def __init__(self, *inputs, **kwargs):
         
     | 
| 608 | 
         
            +
                    super().__init__(*inputs, **kwargs)
         
     | 
| 609 | 
         
            +
             
     | 
| 610 | 
         
            +
                def _init_weights(self, module):
         
     | 
| 611 | 
         
            +
                    """Initialize the weights."""
         
     | 
| 612 | 
         
            +
                    mup_init_scale = math.sqrt(self.config.mup_width_scale)
         
     | 
| 613 | 
         
            +
                    if isinstance(module, (nn.Linear, Conv1D)):
         
     | 
| 614 | 
         
            +
                        # Slightly different from the TF version which uses truncated_normal for initialization
         
     | 
| 615 | 
         
            +
                        # cf https://github.com/pytorch/pytorch/pull/5617
         
     | 
| 616 | 
         
            +
                        module.weight.data.normal_(mean=0.0, std=(self.config.initializer_range * mup_init_scale))
         
     | 
| 617 | 
         
            +
                        if module.bias is not None:
         
     | 
| 618 | 
         
            +
                            module.bias.data.zero_()
         
     | 
| 619 | 
         
            +
                    elif isinstance(module, nn.Embedding):
         
     | 
| 620 | 
         
            +
                        module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
         
     | 
| 621 | 
         
            +
                        if module.padding_idx is not None:
         
     | 
| 622 | 
         
            +
                            module.weight.data[module.padding_idx].zero_()
         
     | 
| 623 | 
         
            +
                    elif isinstance(module, nn.LayerNorm):
         
     | 
| 624 | 
         
            +
                        module.bias.data.zero_()
         
     | 
| 625 | 
         
            +
                        module.weight.data.fill_(1.0)
         
     | 
| 626 | 
         
            +
             
     | 
| 627 | 
         
            +
                    # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
         
     | 
| 628 | 
         
            +
                    #   > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
         
     | 
| 629 | 
         
            +
                    #   > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
         
     | 
| 630 | 
         
            +
                    #   >   -- GPT-2 :: https://openai.com/blog/better-language-models/
         
     | 
| 631 | 
         
            +
                    #
         
     | 
| 632 | 
         
            +
                    # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
         
     | 
| 633 | 
         
            +
                    for name, p in module.named_parameters():
         
     | 
| 634 | 
         
            +
                        if name == "c_proj.weight":
         
     | 
| 635 | 
         
            +
                            # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
         
     | 
| 636 | 
         
            +
                            stddev = self.config.initializer_range * mup_init_scale / math.sqrt(2 * self.config.n_layer)
         
     | 
| 637 | 
         
            +
                            p.data.normal_(mean=0.0, std=stddev)
         
     | 
| 638 | 
         
            +
             
     | 
| 639 | 
         
            +
                def _set_gradient_checkpointing(self, module, value=False):
         
     | 
| 640 | 
         
            +
                    if isinstance(module, CrystalCoderModel):
         
     | 
| 641 | 
         
            +
                        module.gradient_checkpointing = value
         
     | 
| 642 | 
         
            +
             
     | 
| 643 | 
         
            +
                def get_mup_param_groups(self, lr, weight_decay=0.0, decoupled_wd=True):
         
     | 
| 644 | 
         
            +
                    """
         
     | 
| 645 | 
         
            +
                    Returns list of dicts defining parameter groups for muP:
         
     | 
| 646 | 
         
            +
                    group 0: most model params get scaled learning rate and weight decay.
         
     | 
| 647 | 
         
            +
                    group 1: embedding layer gets non-scaled learning rate and weight decay.
         
     | 
| 648 | 
         
            +
                    group 2: normalization layers and biases get non-scaled learning rate only.
         
     | 
| 649 | 
         
            +
             
     | 
| 650 | 
         
            +
                    The output can be passed to Adam-base optimizers 
         
     | 
| 651 | 
         
            +
                    e.g.
         
     | 
| 652 | 
         
            +
                        param_groups = model.get_mup_param_groups(lr=1e-3, weight_decay=0.1)
         
     | 
| 653 | 
         
            +
                        torch.optim.AdamW(param_groups, betas=(0.9, 0.95), eps=1e-8)
         
     | 
| 654 | 
         
            +
                    """
         
     | 
| 655 | 
         
            +
                    norm_modules = (
         
     | 
| 656 | 
         
            +
                        torch.nn.LayerNorm,
         
     | 
| 657 | 
         
            +
                        torch.nn.BatchNorm1d,
         
     | 
| 658 | 
         
            +
                        torch.nn.BatchNorm2d,
         
     | 
| 659 | 
         
            +
                        torch.nn.BatchNorm3d,
         
     | 
| 660 | 
         
            +
                        torch.nn.InstanceNorm1d,
         
     | 
| 661 | 
         
            +
                        torch.nn.InstanceNorm2d,
         
     | 
| 662 | 
         
            +
                        torch.nn.InstanceNorm3d,
         
     | 
| 663 | 
         
            +
                        torch.nn.GroupNorm,
         
     | 
| 664 | 
         
            +
                        torch.nn.SyncBatchNorm,
         
     | 
| 665 | 
         
            +
                        torch.nn.LocalResponseNorm,
         
     | 
| 666 | 
         
            +
                    )
         
     | 
| 667 | 
         
            +
             
     | 
| 668 | 
         
            +
                    def get_group_index(param_name):
         
     | 
| 669 | 
         
            +
                        for name, module in self.named_modules():
         
     | 
| 670 | 
         
            +
                            if name in param_name:
         
     | 
| 671 | 
         
            +
                                if isinstance(module, norm_modules):
         
     | 
| 672 | 
         
            +
                                    return 2
         
     | 
| 673 | 
         
            +
                                elif isinstance(module, torch.nn.Embedding):
         
     | 
| 674 | 
         
            +
                                    return 1
         
     | 
| 675 | 
         
            +
                        return 0
         
     | 
| 676 | 
         
            +
             
     | 
| 677 | 
         
            +
                    width_scale = self.config.mup_width_scale
         
     | 
| 678 | 
         
            +
                    new_param_groups = []
         
     | 
| 679 | 
         
            +
                    new_param_groups.append({"params": [], "lr": lr * width_scale, "weight_decay": weight_decay})
         
     | 
| 680 | 
         
            +
                    if not decoupled_wd:
         
     | 
| 681 | 
         
            +
                        new_param_groups[0]["weight_decay"] /= width_scale
         
     | 
| 682 | 
         
            +
                    new_param_groups.append({"params": [], "lr": lr, "weight_decay": weight_decay})
         
     | 
| 683 | 
         
            +
                    new_param_groups.append({"params": [], "lr": lr, "weight_decay": 0.0})
         
     | 
| 684 | 
         
            +
             
     | 
| 685 | 
         
            +
                    for name, param in self.named_parameters():
         
     | 
| 686 | 
         
            +
                        if not param.requires_grad:
         
     | 
| 687 | 
         
            +
                            continue
         
     | 
| 688 | 
         
            +
             
     | 
| 689 | 
         
            +
                        if name.endswith("bias"):
         
     | 
| 690 | 
         
            +
                            new_param_groups[2]["params"].append(param)
         
     | 
| 691 | 
         
            +
                        else:
         
     | 
| 692 | 
         
            +
                            new_param_groups[get_group_index(name)]["params"].append(param)
         
     | 
| 693 | 
         
            +
             
     | 
| 694 | 
         
            +
                    for idx, param_group in enumerate(new_param_groups):
         
     | 
| 695 | 
         
            +
                        if len(param_group["params"]) == 0:
         
     | 
| 696 | 
         
            +
                            del new_param_groups[idx]
         
     | 
| 697 | 
         
            +
             
     | 
| 698 | 
         
            +
                    return new_param_groups
         
     | 
| 699 | 
         
            +
             
     | 
| 700 | 
         
            +
             
     | 
| 701 | 
         
            +
            CrystalCoder_START_DOCSTRING = r"""
         
     | 
| 702 | 
         
            +
             
     | 
| 703 | 
         
            +
                This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
         
     | 
| 704 | 
         
            +
                library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
         
     | 
| 705 | 
         
            +
                etc.)
         
     | 
| 706 | 
         
            +
             
     | 
| 707 | 
         
            +
                This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
         
     | 
| 708 | 
         
            +
                Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
         
     | 
| 709 | 
         
            +
                and behavior.
         
     | 
| 710 | 
         
            +
             
     | 
| 711 | 
         
            +
                Parameters:
         
     | 
| 712 | 
         
            +
                    config ([`CrystalCoderConfig`]): Model configuration class with all the parameters of the model.
         
     | 
| 713 | 
         
            +
                        Initializing with a config file does not load the weights associated with the model, only the
         
     | 
| 714 | 
         
            +
                        configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
         
     | 
| 715 | 
         
            +
            """
         
     | 
| 716 | 
         
            +
             
     | 
| 717 | 
         
            +
            CrystalCoder_INPUTS_DOCSTRING = r"""
         
     | 
| 718 | 
         
            +
                Args:
         
     | 
| 719 | 
         
            +
                    input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
         
     | 
| 720 | 
         
            +
                        `input_ids_length` = `sequence_length` if `past_key_values` is `None` else
         
     | 
| 721 | 
         
            +
                        `past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
         
     | 
| 722 | 
         
            +
                        sequence tokens in the vocabulary.
         
     | 
| 723 | 
         
            +
             
     | 
| 724 | 
         
            +
                        If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
         
     | 
| 725 | 
         
            +
                        `input_ids`.
         
     | 
| 726 | 
         
            +
             
     | 
| 727 | 
         
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         
     | 
| 728 | 
         
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         
     | 
| 729 | 
         
            +
             
     | 
| 730 | 
         
            +
                        [What are input IDs?](../glossary#input-ids)
         
     | 
| 731 | 
         
            +
                    past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
         
     | 
| 732 | 
         
            +
                        Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
         
     | 
| 733 | 
         
            +
                        `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
         
     | 
| 734 | 
         
            +
                        their past given to this model should not be passed as `input_ids` as they have already been computed.
         
     | 
| 735 | 
         
            +
                    attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
         
     | 
| 736 | 
         
            +
                        Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
         
     | 
| 737 | 
         
            +
             
     | 
| 738 | 
         
            +
                        - 1 for tokens that are **not masked**,
         
     | 
| 739 | 
         
            +
                        - 0 for tokens that are **masked**.
         
     | 
| 740 | 
         
            +
             
     | 
| 741 | 
         
            +
                        If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
         
     | 
| 742 | 
         
            +
                        `past_key_values`. In other words, the `attention_mask` always has to have the length:
         
     | 
| 743 | 
         
            +
                        `len(past_key_values) + len(input_ids)`
         
     | 
| 744 | 
         
            +
             
     | 
| 745 | 
         
            +
                        [What are attention masks?](../glossary#attention-mask)
         
     | 
| 746 | 
         
            +
                    token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
         
     | 
| 747 | 
         
            +
                        Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
         
     | 
| 748 | 
         
            +
                        1]`:
         
     | 
| 749 | 
         
            +
             
     | 
| 750 | 
         
            +
                        - 0 corresponds to a *sentence A* token,
         
     | 
| 751 | 
         
            +
                        - 1 corresponds to a *sentence B* token.
         
     | 
| 752 | 
         
            +
             
     | 
| 753 | 
         
            +
                        [What are token type IDs?](../glossary#token-type-ids)
         
     | 
| 754 | 
         
            +
                    position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         
     | 
| 755 | 
         
            +
                        Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
         
     | 
| 756 | 
         
            +
                        config.max_position_embeddings - 1]`.
         
     | 
| 757 | 
         
            +
             
     | 
| 758 | 
         
            +
                        [What are position IDs?](../glossary#position-ids)
         
     | 
| 759 | 
         
            +
                    head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
         
     | 
| 760 | 
         
            +
                        Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
         
     | 
| 761 | 
         
            +
             
     | 
| 762 | 
         
            +
                        - 1 indicates the head is **not masked**,
         
     | 
| 763 | 
         
            +
                        - 0 indicates the head is **masked**.
         
     | 
| 764 | 
         
            +
             
     | 
| 765 | 
         
            +
                    inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
         
     | 
| 766 | 
         
            +
                        Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
         
     | 
| 767 | 
         
            +
                        is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
         
     | 
| 768 | 
         
            +
                        model's internal embedding lookup matrix.
         
     | 
| 769 | 
         
            +
             
     | 
| 770 | 
         
            +
                        If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
         
     | 
| 771 | 
         
            +
                        `past_key_values`).
         
     | 
| 772 | 
         
            +
                    use_cache (`bool`, *optional*):
         
     | 
| 773 | 
         
            +
                        If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
         
     | 
| 774 | 
         
            +
                        `past_key_values`).
         
     | 
| 775 | 
         
            +
                    output_attentions (`bool`, *optional*):
         
     | 
| 776 | 
         
            +
                        Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
         
     | 
| 777 | 
         
            +
                        tensors for more detail.
         
     | 
| 778 | 
         
            +
                    output_hidden_states (`bool`, *optional*):
         
     | 
| 779 | 
         
            +
                        Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
         
     | 
| 780 | 
         
            +
                        more detail.
         
     | 
| 781 | 
         
            +
                    return_dict (`bool`, *optional*):
         
     | 
| 782 | 
         
            +
                        Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
         
     | 
| 783 | 
         
            +
            """
         
     | 
| 784 | 
         
            +
            PARALLELIZE_DOCSTRING = r"""
         
     | 
| 785 | 
         
            +
                This is an experimental feature and is a subject to change at a moment's notice.
         
     | 
| 786 | 
         
            +
             
     | 
| 787 | 
         
            +
                Uses a device map to distribute attention modules of the model across several devices. If no device map is given,
         
     | 
| 788 | 
         
            +
                it will evenly distribute blocks across all devices.
         
     | 
| 789 | 
         
            +
             
     | 
| 790 | 
         
            +
                Args:
         
     | 
| 791 | 
         
            +
                    device_map (`Dict[int, list]`, optional, defaults to None):
         
     | 
| 792 | 
         
            +
                        A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
         
     | 
| 793 | 
         
            +
                        automatically mapped to the first device (for esoteric reasons). That means that the first device should
         
     | 
| 794 | 
         
            +
                        have fewer attention modules mapped to it than other devices. For reference, the gpt2 models have the
         
     | 
| 795 | 
         
            +
                        following number of attention modules:
         
     | 
| 796 | 
         
            +
             
     | 
| 797 | 
         
            +
                            - gpt2: 12
         
     | 
| 798 | 
         
            +
                            - gpt2-medium: 24
         
     | 
| 799 | 
         
            +
                            - gpt2-large: 36
         
     | 
| 800 | 
         
            +
                            - gpt2-xl: 48
         
     | 
| 801 | 
         
            +
             
     | 
| 802 | 
         
            +
                Example:
         
     | 
| 803 | 
         
            +
             
     | 
| 804 | 
         
            +
                ```python
         
     | 
| 805 | 
         
            +
                # Here is an example of a device map on a machine with 4 GPUs using gpt2-xl, which has a total of 48 attention modules:
         
     | 
| 806 | 
         
            +
                model = GPT2LMHeadModel.from_pretrained("gpt2-xl")
         
     | 
| 807 | 
         
            +
                device_map = {
         
     | 
| 808 | 
         
            +
                    0: [0, 1, 2, 3, 4, 5, 6, 7, 8],
         
     | 
| 809 | 
         
            +
                    1: [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21],
         
     | 
| 810 | 
         
            +
                    2: [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34],
         
     | 
| 811 | 
         
            +
                    3: [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47],
         
     | 
| 812 | 
         
            +
                }
         
     | 
| 813 | 
         
            +
                model.parallelize(device_map)
         
     | 
| 814 | 
         
            +
                ```
         
     | 
| 815 | 
         
            +
            """
         
     | 
| 816 | 
         
            +
            DEPARALLELIZE_DOCSTRING = r"""
         
     | 
| 817 | 
         
            +
                Moves the model to cpu from a model parallel state.
         
     | 
| 818 | 
         
            +
             
     | 
| 819 | 
         
            +
                Example:
         
     | 
| 820 | 
         
            +
             
     | 
| 821 | 
         
            +
                ```python
         
     | 
| 822 | 
         
            +
                # On a 4 GPU machine with gpt2-large:
         
     | 
| 823 | 
         
            +
                model = GPT2LMHeadModel.from_pretrained("gpt2-large")
         
     | 
| 824 | 
         
            +
                device_map = {
         
     | 
| 825 | 
         
            +
                    0: [0, 1, 2, 3, 4, 5, 6, 7],
         
     | 
| 826 | 
         
            +
                    1: [8, 9, 10, 11, 12, 13, 14, 15],
         
     | 
| 827 | 
         
            +
                    2: [16, 17, 18, 19, 20, 21, 22, 23],
         
     | 
| 828 | 
         
            +
                    3: [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35],
         
     | 
| 829 | 
         
            +
                }
         
     | 
| 830 | 
         
            +
                model.parallelize(device_map)  # Splits the model across several devices
         
     | 
| 831 | 
         
            +
                model.deparallelize()  # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
         
     | 
| 832 | 
         
            +
                ```
         
     | 
| 833 | 
         
            +
            """
         
     | 
| 834 | 
         
            +
             
     | 
| 835 | 
         
            +
             
     | 
| 836 | 
         
            +
            @add_start_docstrings(
         
     | 
| 837 | 
         
            +
                "The bare CrystalCoder Model transformer outputting raw hidden-states without any specific head on top.",
         
     | 
| 838 | 
         
            +
                CrystalCoder_START_DOCSTRING,
         
     | 
| 839 | 
         
            +
            )
         
     | 
| 840 | 
         
            +
            class CrystalCoderModel(CrystalCoderPreTrainedModel):
         
     | 
| 841 | 
         
            +
                _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"]
         
     | 
| 842 | 
         
            +
                _keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias"]
         
     | 
| 843 | 
         
            +
             
     | 
| 844 | 
         
            +
                def __init__(self, config):
         
     | 
| 845 | 
         
            +
                    super().__init__(config)
         
     | 
| 846 | 
         
            +
             
     | 
| 847 | 
         
            +
                    self.embed_dim = config.hidden_size
         
     | 
| 848 | 
         
            +
             
     | 
| 849 | 
         
            +
                    self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
         
     | 
| 850 | 
         
            +
                    self.wpe = (
         
     | 
| 851 | 
         
            +
                        nn.Embedding(config.max_position_embeddings, self.embed_dim)
         
     | 
| 852 | 
         
            +
                        if config.position_embedding_type == "learned"
         
     | 
| 853 | 
         
            +
                        else None
         
     | 
| 854 | 
         
            +
                    )
         
     | 
| 855 | 
         
            +
                    self.embeddings_scale = config.mup_embeddings_scale
         
     | 
| 856 | 
         
            +
             
     | 
| 857 | 
         
            +
                    self.drop = nn.Dropout(config.embd_pdrop)
         
     | 
| 858 | 
         
            +
                    self.h = nn.ModuleList([CrystalCoderBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])
         
     | 
| 859 | 
         
            +
                    self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
         
     | 
| 860 | 
         
            +
             
     | 
| 861 | 
         
            +
                    self.relative_pe = (
         
     | 
| 862 | 
         
            +
                        AlibiPositionEmbeddingLayer(config.num_attention_heads)
         
     | 
| 863 | 
         
            +
                        if config.position_embedding_type == "alibi"
         
     | 
| 864 | 
         
            +
                        else None
         
     | 
| 865 | 
         
            +
                    )
         
     | 
| 866 | 
         
            +
             
     | 
| 867 | 
         
            +
                    # Model parallel
         
     | 
| 868 | 
         
            +
                    self.model_parallel = False
         
     | 
| 869 | 
         
            +
                    self.device_map = None
         
     | 
| 870 | 
         
            +
                    self.gradient_checkpointing = False
         
     | 
| 871 | 
         
            +
             
     | 
| 872 | 
         
            +
                    # Initialize weights and apply final processing
         
     | 
| 873 | 
         
            +
                    self.post_init()
         
     | 
| 874 | 
         
            +
             
     | 
| 875 | 
         
            +
                @add_start_docstrings(PARALLELIZE_DOCSTRING)
         
     | 
| 876 | 
         
            +
                def parallelize(self, device_map=None):
         
     | 
| 877 | 
         
            +
                    # Check validity of device_map
         
     | 
| 878 | 
         
            +
                    warnings.warn(
         
     | 
| 879 | 
         
            +
                        "`CrystalCoderModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your"
         
     | 
| 880 | 
         
            +
                        " model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
         
     | 
| 881 | 
         
            +
                        " `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1,"
         
     | 
| 882 | 
         
            +
                        " ...}",
         
     | 
| 883 | 
         
            +
                        FutureWarning,
         
     | 
| 884 | 
         
            +
                    )
         
     | 
| 885 | 
         
            +
                    self.device_map = (
         
     | 
| 886 | 
         
            +
                        get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
         
     | 
| 887 | 
         
            +
                    )
         
     | 
| 888 | 
         
            +
                    assert_device_map(self.device_map, len(self.h))
         
     | 
| 889 | 
         
            +
                    self.model_parallel = True
         
     | 
| 890 | 
         
            +
                    self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
         
     | 
| 891 | 
         
            +
                    self.last_device = "cuda:" + str(max(self.device_map.keys()))
         
     | 
| 892 | 
         
            +
                    self.wte = self.wte.to(self.first_device)
         
     | 
| 893 | 
         
            +
                    if self.wpe is not None:
         
     | 
| 894 | 
         
            +
                        self.wpe = self.wpe.to(self.first_device)
         
     | 
| 895 | 
         
            +
                    # Load onto devices
         
     | 
| 896 | 
         
            +
                    for k, v in self.device_map.items():
         
     | 
| 897 | 
         
            +
                        for block in v:
         
     | 
| 898 | 
         
            +
                            cuda_device = "cuda:" + str(k)
         
     | 
| 899 | 
         
            +
                            self.h[block] = self.h[block].to(cuda_device)
         
     | 
| 900 | 
         
            +
                    # ln_f to last
         
     | 
| 901 | 
         
            +
                    self.ln_f = self.ln_f.to(self.last_device)
         
     | 
| 902 | 
         
            +
             
     | 
| 903 | 
         
            +
                @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
         
     | 
| 904 | 
         
            +
                def deparallelize(self):
         
     | 
| 905 | 
         
            +
                    warnings.warn(
         
     | 
| 906 | 
         
            +
                        "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
         
     | 
| 907 | 
         
            +
                        FutureWarning,
         
     | 
| 908 | 
         
            +
                    )
         
     | 
| 909 | 
         
            +
                    self.model_parallel = False
         
     | 
| 910 | 
         
            +
                    self.device_map = None
         
     | 
| 911 | 
         
            +
                    self.first_device = "cpu"
         
     | 
| 912 | 
         
            +
                    self.last_device = "cpu"
         
     | 
| 913 | 
         
            +
                    self.wte = self.wte.to("cpu")
         
     | 
| 914 | 
         
            +
                    if self.wpe is not None:
         
     | 
| 915 | 
         
            +
                        self.wpe = self.wpe.to("cpu")
         
     | 
| 916 | 
         
            +
                    for index in range(len(self.h)):
         
     | 
| 917 | 
         
            +
                        self.h[index] = self.h[index].to("cpu")
         
     | 
| 918 | 
         
            +
                    self.ln_f = self.ln_f.to("cpu")
         
     | 
| 919 | 
         
            +
                    torch.cuda.empty_cache()
         
     | 
| 920 | 
         
            +
             
     | 
| 921 | 
         
            +
                def get_input_embeddings(self):
         
     | 
| 922 | 
         
            +
                    return self.wte
         
     | 
| 923 | 
         
            +
             
     | 
| 924 | 
         
            +
                def set_input_embeddings(self, new_embeddings):
         
     | 
| 925 | 
         
            +
                    self.wte = new_embeddings
         
     | 
| 926 | 
         
            +
             
     | 
| 927 | 
         
            +
                def _prune_heads(self, heads_to_prune):
         
     | 
| 928 | 
         
            +
                    """
         
     | 
| 929 | 
         
            +
                    Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
         
     | 
| 930 | 
         
            +
                    """
         
     | 
| 931 | 
         
            +
                    for layer, heads in heads_to_prune.items():
         
     | 
| 932 | 
         
            +
                        self.h[layer].attn.prune_heads(heads)
         
     | 
| 933 | 
         
            +
             
     | 
| 934 | 
         
            +
                @add_start_docstrings_to_model_forward(CrystalCoder_INPUTS_DOCSTRING)
         
     | 
| 935 | 
         
            +
                def forward(
         
     | 
| 936 | 
         
            +
                    self,
         
     | 
| 937 | 
         
            +
                    input_ids: Optional[torch.LongTensor] = None,
         
     | 
| 938 | 
         
            +
                    past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
         
     | 
| 939 | 
         
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 940 | 
         
            +
                    token_type_ids: Optional[torch.LongTensor] = None,
         
     | 
| 941 | 
         
            +
                    position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 942 | 
         
            +
                    head_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 943 | 
         
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 944 | 
         
            +
                    encoder_hidden_states: Optional[torch.Tensor] = None,
         
     | 
| 945 | 
         
            +
                    encoder_attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 946 | 
         
            +
                    use_cache: Optional[bool] = None,
         
     | 
| 947 | 
         
            +
                    output_attentions: Optional[bool] = None,
         
     | 
| 948 | 
         
            +
                    output_hidden_states: Optional[bool] = None,
         
     | 
| 949 | 
         
            +
                    return_dict: Optional[bool] = None,
         
     | 
| 950 | 
         
            +
                ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
         
     | 
| 951 | 
         
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         
     | 
| 952 | 
         
            +
                    output_hidden_states = (
         
     | 
| 953 | 
         
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         
     | 
| 954 | 
         
            +
                    )
         
     | 
| 955 | 
         
            +
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         
     | 
| 956 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 957 | 
         
            +
             
     | 
| 958 | 
         
            +
                    if input_ids is not None and inputs_embeds is not None:
         
     | 
| 959 | 
         
            +
                        raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
         
     | 
| 960 | 
         
            +
                    elif input_ids is not None:
         
     | 
| 961 | 
         
            +
                        input_shape = input_ids.size()
         
     | 
| 962 | 
         
            +
                        input_ids = input_ids.view(-1, input_shape[-1])
         
     | 
| 963 | 
         
            +
                        batch_size = input_ids.shape[0]
         
     | 
| 964 | 
         
            +
                    elif inputs_embeds is not None:
         
     | 
| 965 | 
         
            +
                        input_shape = inputs_embeds.size()[:-1]
         
     | 
| 966 | 
         
            +
                        batch_size = inputs_embeds.shape[0]
         
     | 
| 967 | 
         
            +
                    else:
         
     | 
| 968 | 
         
            +
                        raise ValueError("You have to specify either input_ids or inputs_embeds")
         
     | 
| 969 | 
         
            +
             
     | 
| 970 | 
         
            +
                    device = input_ids.device if input_ids is not None else inputs_embeds.device
         
     | 
| 971 | 
         
            +
             
     | 
| 972 | 
         
            +
                    if token_type_ids is not None:
         
     | 
| 973 | 
         
            +
                        token_type_ids = token_type_ids.view(-1, input_shape[-1])
         
     | 
| 974 | 
         
            +
                    if position_ids is not None:
         
     | 
| 975 | 
         
            +
                        position_ids = position_ids.view(-1, input_shape[-1])
         
     | 
| 976 | 
         
            +
             
     | 
| 977 | 
         
            +
                    if past_key_values is None:
         
     | 
| 978 | 
         
            +
                        past_length = 0
         
     | 
| 979 | 
         
            +
                        past_key_values = tuple([None] * len(self.h))
         
     | 
| 980 | 
         
            +
                    else:
         
     | 
| 981 | 
         
            +
                        past_length = past_key_values[0][0].size(-2)
         
     | 
| 982 | 
         
            +
                    if position_ids is None:
         
     | 
| 983 | 
         
            +
                        position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
         
     | 
| 984 | 
         
            +
                        position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
         
     | 
| 985 | 
         
            +
             
     | 
| 986 | 
         
            +
                    # CrystalCoderAttention mask.
         
     | 
| 987 | 
         
            +
                    if attention_mask is not None:
         
     | 
| 988 | 
         
            +
                        if batch_size <= 0:
         
     | 
| 989 | 
         
            +
                            raise ValueError("batch_size has to be defined and > 0")
         
     | 
| 990 | 
         
            +
                        attention_mask = attention_mask.view(batch_size, -1)
         
     | 
| 991 | 
         
            +
                        # We create a 3D attention mask from a 2D tensor mask.
         
     | 
| 992 | 
         
            +
                        # Sizes are [batch_size, 1, 1, to_seq_length]
         
     | 
| 993 | 
         
            +
                        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
         
     | 
| 994 | 
         
            +
                        # this attention mask is more simple than the triangular masking of causal attention
         
     | 
| 995 | 
         
            +
                        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
         
     | 
| 996 | 
         
            +
                        attention_mask = attention_mask[:, None, None, :]
         
     | 
| 997 | 
         
            +
             
     | 
| 998 | 
         
            +
                        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
         
     | 
| 999 | 
         
            +
                        # masked positions, this operation will create a tensor which is 0.0 for
         
     | 
| 1000 | 
         
            +
                        # positions we want to attend and the dtype's smallest value for masked positions.
         
     | 
| 1001 | 
         
            +
                        # Since we are adding it to the raw scores before the softmax, this is
         
     | 
| 1002 | 
         
            +
                        # effectively the same as removing these entirely.
         
     | 
| 1003 | 
         
            +
                        attention_mask = attention_mask.to(dtype=self.dtype)  # fp16 compatibility
         
     | 
| 1004 | 
         
            +
                        attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
         
     | 
| 1005 | 
         
            +
             
     | 
| 1006 | 
         
            +
                    # If a 2D or 3D attention mask is provided for the cross-attention
         
     | 
| 1007 | 
         
            +
                    # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
         
     | 
| 1008 | 
         
            +
                    if self.config.add_cross_attention and encoder_hidden_states is not None:
         
     | 
| 1009 | 
         
            +
                        encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
         
     | 
| 1010 | 
         
            +
                        encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
         
     | 
| 1011 | 
         
            +
                        if encoder_attention_mask is None:
         
     | 
| 1012 | 
         
            +
                            encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
         
     | 
| 1013 | 
         
            +
                        encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
         
     | 
| 1014 | 
         
            +
                    else:
         
     | 
| 1015 | 
         
            +
                        encoder_attention_mask = None
         
     | 
| 1016 | 
         
            +
             
     | 
| 1017 | 
         
            +
                    # Prepare head mask if needed
         
     | 
| 1018 | 
         
            +
                    # 1.0 in head_mask indicate we keep the head
         
     | 
| 1019 | 
         
            +
                    # attention_probs has shape bsz x n_heads x N x N
         
     | 
| 1020 | 
         
            +
                    # head_mask has shape n_layer x batch x n_heads x N x N
         
     | 
| 1021 | 
         
            +
                    head_mask = self.get_head_mask(head_mask, self.config.n_layer)
         
     | 
| 1022 | 
         
            +
             
     | 
| 1023 | 
         
            +
                    if inputs_embeds is None:
         
     | 
| 1024 | 
         
            +
                        inputs_embeds = self.wte(input_ids)
         
     | 
| 1025 | 
         
            +
                    if self.wpe is not None:
         
     | 
| 1026 | 
         
            +
                        position_embeds = self.wpe(position_ids)
         
     | 
| 1027 | 
         
            +
                        hidden_states = inputs_embeds + position_embeds
         
     | 
| 1028 | 
         
            +
                    else:
         
     | 
| 1029 | 
         
            +
                        hidden_states = inputs_embeds
         
     | 
| 1030 | 
         
            +
                    hidden_states *= torch.tensor(
         
     | 
| 1031 | 
         
            +
                        float(self.embeddings_scale), dtype=hidden_states.dtype, device=hidden_states.device
         
     | 
| 1032 | 
         
            +
                    )
         
     | 
| 1033 | 
         
            +
             
     | 
| 1034 | 
         
            +
                    if token_type_ids is not None:
         
     | 
| 1035 | 
         
            +
                        token_type_embeds = self.wte(token_type_ids)
         
     | 
| 1036 | 
         
            +
                        hidden_states = hidden_states + token_type_embeds
         
     | 
| 1037 | 
         
            +
             
     | 
| 1038 | 
         
            +
                    hidden_states = self.drop(hidden_states)
         
     | 
| 1039 | 
         
            +
             
     | 
| 1040 | 
         
            +
                    if self.relative_pe is not None:
         
     | 
| 1041 | 
         
            +
                        length = input_ids.shape[1]
         
     | 
| 1042 | 
         
            +
                        cached_kv_length = 0
         
     | 
| 1043 | 
         
            +
                        cached_kv = past_key_values[0]
         
     | 
| 1044 | 
         
            +
                        if cached_kv is not None:
         
     | 
| 1045 | 
         
            +
                            cached_kv_length = cached_kv[0].shape[-2]
         
     | 
| 1046 | 
         
            +
                        position_bias = self.relative_pe(length, length, cached_kv_length)
         
     | 
| 1047 | 
         
            +
                    else:
         
     | 
| 1048 | 
         
            +
                        position_bias = None
         
     | 
| 1049 | 
         
            +
             
     | 
| 1050 | 
         
            +
                    output_shape = input_shape + (hidden_states.size(-1),)
         
     | 
| 1051 | 
         
            +
             
     | 
| 1052 | 
         
            +
                    if self.gradient_checkpointing and self.training:
         
     | 
| 1053 | 
         
            +
                        if use_cache:
         
     | 
| 1054 | 
         
            +
                            logger.warning_once(
         
     | 
| 1055 | 
         
            +
                                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
         
     | 
| 1056 | 
         
            +
                            )
         
     | 
| 1057 | 
         
            +
                            use_cache = False
         
     | 
| 1058 | 
         
            +
             
     | 
| 1059 | 
         
            +
                    presents = () if use_cache else None
         
     | 
| 1060 | 
         
            +
                    all_self_attentions = () if output_attentions else None
         
     | 
| 1061 | 
         
            +
                    all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
         
     | 
| 1062 | 
         
            +
                    all_hidden_states = () if output_hidden_states else None
         
     | 
| 1063 | 
         
            +
                    for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
         
     | 
| 1064 | 
         
            +
                        # Model parallel
         
     | 
| 1065 | 
         
            +
                        if self.model_parallel:
         
     | 
| 1066 | 
         
            +
                            torch.cuda.set_device(hidden_states.device)
         
     | 
| 1067 | 
         
            +
                            # Ensure layer_past is on same device as hidden_states (might not be correct)
         
     | 
| 1068 | 
         
            +
                            if layer_past is not None:
         
     | 
| 1069 | 
         
            +
                                layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
         
     | 
| 1070 | 
         
            +
                            # Ensure that attention_mask is always on the same device as hidden_states
         
     | 
| 1071 | 
         
            +
                            if attention_mask is not None:
         
     | 
| 1072 | 
         
            +
                                attention_mask = attention_mask.to(hidden_states.device)
         
     | 
| 1073 | 
         
            +
                            if isinstance(head_mask, torch.Tensor):
         
     | 
| 1074 | 
         
            +
                                head_mask = head_mask.to(hidden_states.device)
         
     | 
| 1075 | 
         
            +
                        if output_hidden_states:
         
     | 
| 1076 | 
         
            +
                            all_hidden_states = all_hidden_states + (hidden_states,)
         
     | 
| 1077 | 
         
            +
             
     | 
| 1078 | 
         
            +
                        if self.gradient_checkpointing and self.training:
         
     | 
| 1079 | 
         
            +
             
     | 
| 1080 | 
         
            +
                            def create_custom_forward(module):
         
     | 
| 1081 | 
         
            +
                                def custom_forward(*inputs):
         
     | 
| 1082 | 
         
            +
                                    # None for past_key_value
         
     | 
| 1083 | 
         
            +
                                    return module(*inputs, use_cache, output_attentions)
         
     | 
| 1084 | 
         
            +
             
     | 
| 1085 | 
         
            +
                                return custom_forward
         
     | 
| 1086 | 
         
            +
             
     | 
| 1087 | 
         
            +
                            outputs = torch.utils.checkpoint.checkpoint(
         
     | 
| 1088 | 
         
            +
                                create_custom_forward(block),
         
     | 
| 1089 | 
         
            +
                                hidden_states,
         
     | 
| 1090 | 
         
            +
                                None,
         
     | 
| 1091 | 
         
            +
                                attention_mask,
         
     | 
| 1092 | 
         
            +
                                head_mask[i],
         
     | 
| 1093 | 
         
            +
                                encoder_hidden_states,
         
     | 
| 1094 | 
         
            +
                                encoder_attention_mask,
         
     | 
| 1095 | 
         
            +
                            )
         
     | 
| 1096 | 
         
            +
                        else:
         
     | 
| 1097 | 
         
            +
                            outputs = block(
         
     | 
| 1098 | 
         
            +
                                hidden_states,
         
     | 
| 1099 | 
         
            +
                                layer_past=layer_past,
         
     | 
| 1100 | 
         
            +
                                attention_mask=attention_mask,
         
     | 
| 1101 | 
         
            +
                                head_mask=head_mask[i],
         
     | 
| 1102 | 
         
            +
                                encoder_hidden_states=encoder_hidden_states,
         
     | 
| 1103 | 
         
            +
                                encoder_attention_mask=encoder_attention_mask,
         
     | 
| 1104 | 
         
            +
                                use_cache=use_cache,
         
     | 
| 1105 | 
         
            +
                                output_attentions=output_attentions,
         
     | 
| 1106 | 
         
            +
                                position_bias=position_bias,
         
     | 
| 1107 | 
         
            +
                            )
         
     | 
| 1108 | 
         
            +
             
     | 
| 1109 | 
         
            +
                        hidden_states = outputs[0]
         
     | 
| 1110 | 
         
            +
                        if use_cache is True:
         
     | 
| 1111 | 
         
            +
                            presents = presents + (outputs[1],)
         
     | 
| 1112 | 
         
            +
             
     | 
| 1113 | 
         
            +
                        if output_attentions:
         
     | 
| 1114 | 
         
            +
                            all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
         
     | 
| 1115 | 
         
            +
                            if self.config.add_cross_attention:
         
     | 
| 1116 | 
         
            +
                                all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
         
     | 
| 1117 | 
         
            +
             
     | 
| 1118 | 
         
            +
                        # Model Parallel: If it's the last layer for that device, put things on the next device
         
     | 
| 1119 | 
         
            +
                        if self.model_parallel:
         
     | 
| 1120 | 
         
            +
                            for k, v in self.device_map.items():
         
     | 
| 1121 | 
         
            +
                                if i == v[-1] and "cuda:" + str(k) != self.last_device:
         
     | 
| 1122 | 
         
            +
                                    hidden_states = hidden_states.to("cuda:" + str(k + 1))
         
     | 
| 1123 | 
         
            +
             
     | 
| 1124 | 
         
            +
                    hidden_states = self.ln_f(hidden_states)
         
     | 
| 1125 | 
         
            +
             
     | 
| 1126 | 
         
            +
                    hidden_states = hidden_states.view(output_shape)
         
     | 
| 1127 | 
         
            +
                    # Add last hidden state
         
     | 
| 1128 | 
         
            +
                    if output_hidden_states:
         
     | 
| 1129 | 
         
            +
                        all_hidden_states = all_hidden_states + (hidden_states,)
         
     | 
| 1130 | 
         
            +
             
     | 
| 1131 | 
         
            +
                    if not return_dict:
         
     | 
| 1132 | 
         
            +
                        return tuple(
         
     | 
| 1133 | 
         
            +
                            v
         
     | 
| 1134 | 
         
            +
                            for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
         
     | 
| 1135 | 
         
            +
                            if v is not None
         
     | 
| 1136 | 
         
            +
                        )
         
     | 
| 1137 | 
         
            +
             
     | 
| 1138 | 
         
            +
                    return BaseModelOutputWithPastAndCrossAttentions(
         
     | 
| 1139 | 
         
            +
                        last_hidden_state=hidden_states,
         
     | 
| 1140 | 
         
            +
                        past_key_values=presents,
         
     | 
| 1141 | 
         
            +
                        hidden_states=all_hidden_states,
         
     | 
| 1142 | 
         
            +
                        attentions=all_self_attentions,
         
     | 
| 1143 | 
         
            +
                        cross_attentions=all_cross_attentions,
         
     | 
| 1144 | 
         
            +
                    )
         
     | 
| 1145 | 
         
            +
             
     | 
| 1146 | 
         
            +
             
     | 
| 1147 | 
         
            +
            @add_start_docstrings(
         
     | 
| 1148 | 
         
            +
                """
         
     | 
| 1149 | 
         
            +
                The CrystalCoder Model transformer with a language modeling head on top (linear layer with weights tied to the input
         
     | 
| 1150 | 
         
            +
                embeddings).
         
     | 
| 1151 | 
         
            +
                """,
         
     | 
| 1152 | 
         
            +
                CrystalCoder_START_DOCSTRING,
         
     | 
| 1153 | 
         
            +
            )
         
     | 
| 1154 | 
         
            +
            class CrystalCoderLMHeadModel(CrystalCoderPreTrainedModel):
         
     | 
| 1155 | 
         
            +
                _keys_to_ignore_on_load_missing = [r"lm_head.weight"]
         
     | 
| 1156 | 
         
            +
                _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias"]
         
     | 
| 1157 | 
         
            +
             
     | 
| 1158 | 
         
            +
                def __init__(self, config):
         
     | 
| 1159 | 
         
            +
                    super().__init__(config)
         
     | 
| 1160 | 
         
            +
                    self.transformer = CrystalCoderModel(config)
         
     | 
| 1161 | 
         
            +
                    self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
         
     | 
| 1162 | 
         
            +
                    self.output_logits_scale = config.mup_output_alpha * config.mup_width_scale
         
     | 
| 1163 | 
         
            +
             
     | 
| 1164 | 
         
            +
                    # Model parallel
         
     | 
| 1165 | 
         
            +
                    self.model_parallel = False
         
     | 
| 1166 | 
         
            +
                    self.device_map = None
         
     | 
| 1167 | 
         
            +
             
     | 
| 1168 | 
         
            +
                    # Initialize weights and apply final processing
         
     | 
| 1169 | 
         
            +
                    self.post_init()
         
     | 
| 1170 | 
         
            +
             
     | 
| 1171 | 
         
            +
                @add_start_docstrings(PARALLELIZE_DOCSTRING)
         
     | 
| 1172 | 
         
            +
                def parallelize(self, device_map=None):
         
     | 
| 1173 | 
         
            +
                    warnings.warn(
         
     | 
| 1174 | 
         
            +
                        "`CrystalCoderLMHeadModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
         
     | 
| 1175 | 
         
            +
                        " your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
         
     | 
| 1176 | 
         
            +
                        " `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':"
         
     | 
| 1177 | 
         
            +
                        " 0, 'transformer.h.1': 1, ...}",
         
     | 
| 1178 | 
         
            +
                        FutureWarning,
         
     | 
| 1179 | 
         
            +
                    )
         
     | 
| 1180 | 
         
            +
                    self.device_map = (
         
     | 
| 1181 | 
         
            +
                        get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
         
     | 
| 1182 | 
         
            +
                        if device_map is None
         
     | 
| 1183 | 
         
            +
                        else device_map
         
     | 
| 1184 | 
         
            +
                    )
         
     | 
| 1185 | 
         
            +
                    assert_device_map(self.device_map, len(self.transformer.h))
         
     | 
| 1186 | 
         
            +
                    self.transformer.parallelize(self.device_map)
         
     | 
| 1187 | 
         
            +
                    self.lm_head = self.lm_head.to(self.transformer.first_device)
         
     | 
| 1188 | 
         
            +
                    self.model_parallel = True
         
     | 
| 1189 | 
         
            +
             
     | 
| 1190 | 
         
            +
                @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
         
     | 
| 1191 | 
         
            +
                def deparallelize(self):
         
     | 
| 1192 | 
         
            +
                    warnings.warn(
         
     | 
| 1193 | 
         
            +
                        "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
         
     | 
| 1194 | 
         
            +
                        FutureWarning,
         
     | 
| 1195 | 
         
            +
                    )
         
     | 
| 1196 | 
         
            +
                    self.transformer.deparallelize()
         
     | 
| 1197 | 
         
            +
                    self.transformer = self.transformer.to("cpu")
         
     | 
| 1198 | 
         
            +
                    self.lm_head = self.lm_head.to("cpu")
         
     | 
| 1199 | 
         
            +
                    self.model_parallel = False
         
     | 
| 1200 | 
         
            +
                    torch.cuda.empty_cache()
         
     | 
| 1201 | 
         
            +
             
     | 
| 1202 | 
         
            +
                def get_output_embeddings(self):
         
     | 
| 1203 | 
         
            +
                    return self.lm_head
         
     | 
| 1204 | 
         
            +
             
     | 
| 1205 | 
         
            +
                def set_output_embeddings(self, new_embeddings):
         
     | 
| 1206 | 
         
            +
                    self.lm_head = new_embeddings
         
     | 
| 1207 | 
         
            +
             
     | 
| 1208 | 
         
            +
                def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
         
     | 
| 1209 | 
         
            +
                    token_type_ids = kwargs.get("token_type_ids", None)
         
     | 
| 1210 | 
         
            +
                    # only last token for inputs_ids if past is defined in kwargs
         
     | 
| 1211 | 
         
            +
                    if past_key_values:
         
     | 
| 1212 | 
         
            +
                        input_ids = input_ids[:, -1].unsqueeze(-1)
         
     | 
| 1213 | 
         
            +
                        if token_type_ids is not None:
         
     | 
| 1214 | 
         
            +
                            token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
         
     | 
| 1215 | 
         
            +
             
     | 
| 1216 | 
         
            +
                    attention_mask = kwargs.get("attention_mask", None)
         
     | 
| 1217 | 
         
            +
                    position_ids = kwargs.get("position_ids", None)
         
     | 
| 1218 | 
         
            +
             
     | 
| 1219 | 
         
            +
                    if attention_mask is not None and position_ids is None:
         
     | 
| 1220 | 
         
            +
                        # create position_ids on the fly for batch generation
         
     | 
| 1221 | 
         
            +
                        position_ids = attention_mask.long().cumsum(-1) - 1
         
     | 
| 1222 | 
         
            +
                        position_ids.masked_fill_(attention_mask == 0, 1)
         
     | 
| 1223 | 
         
            +
                        if past_key_values:
         
     | 
| 1224 | 
         
            +
                            position_ids = position_ids[:, -1].unsqueeze(-1)
         
     | 
| 1225 | 
         
            +
                    else:
         
     | 
| 1226 | 
         
            +
                        position_ids = None
         
     | 
| 1227 | 
         
            +
             
     | 
| 1228 | 
         
            +
                    # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
         
     | 
| 1229 | 
         
            +
                    if inputs_embeds is not None and past_key_values is None:
         
     | 
| 1230 | 
         
            +
                        model_inputs = {"inputs_embeds": inputs_embeds}
         
     | 
| 1231 | 
         
            +
                    else:
         
     | 
| 1232 | 
         
            +
                        model_inputs = {"input_ids": input_ids}
         
     | 
| 1233 | 
         
            +
             
     | 
| 1234 | 
         
            +
                    model_inputs.update(
         
     | 
| 1235 | 
         
            +
                        {
         
     | 
| 1236 | 
         
            +
                            "past_key_values": past_key_values,
         
     | 
| 1237 | 
         
            +
                            "use_cache": kwargs.get("use_cache"),
         
     | 
| 1238 | 
         
            +
                            "position_ids": position_ids,
         
     | 
| 1239 | 
         
            +
                            "attention_mask": attention_mask,
         
     | 
| 1240 | 
         
            +
                            "token_type_ids": token_type_ids,
         
     | 
| 1241 | 
         
            +
                        }
         
     | 
| 1242 | 
         
            +
                    )
         
     | 
| 1243 | 
         
            +
                    return model_inputs
         
     | 
| 1244 | 
         
            +
             
     | 
| 1245 | 
         
            +
                @add_start_docstrings_to_model_forward(CrystalCoder_INPUTS_DOCSTRING)
         
     | 
| 1246 | 
         
            +
                def forward(
         
     | 
| 1247 | 
         
            +
                    self,
         
     | 
| 1248 | 
         
            +
                    input_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1249 | 
         
            +
                    past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
         
     | 
| 1250 | 
         
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 1251 | 
         
            +
                    token_type_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1252 | 
         
            +
                    position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1253 | 
         
            +
                    head_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 1254 | 
         
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 1255 | 
         
            +
                    encoder_hidden_states: Optional[torch.Tensor] = None,
         
     | 
| 1256 | 
         
            +
                    encoder_attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 1257 | 
         
            +
                    labels: Optional[torch.LongTensor] = None,
         
     | 
| 1258 | 
         
            +
                    use_cache: Optional[bool] = None,
         
     | 
| 1259 | 
         
            +
                    output_attentions: Optional[bool] = None,
         
     | 
| 1260 | 
         
            +
                    output_hidden_states: Optional[bool] = None,
         
     | 
| 1261 | 
         
            +
                    return_dict: Optional[bool] = None,
         
     | 
| 1262 | 
         
            +
                ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
         
     | 
| 1263 | 
         
            +
                    r"""
         
     | 
| 1264 | 
         
            +
                    labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         
     | 
| 1265 | 
         
            +
                        Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
         
     | 
| 1266 | 
         
            +
                        `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
         
     | 
| 1267 | 
         
            +
                        are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
         
     | 
| 1268 | 
         
            +
                    """
         
     | 
| 1269 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1270 | 
         
            +
             
     | 
| 1271 | 
         
            +
                    transformer_outputs = self.transformer(
         
     | 
| 1272 | 
         
            +
                        input_ids,
         
     | 
| 1273 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 1274 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 1275 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 1276 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 1277 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 1278 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 1279 | 
         
            +
                        encoder_hidden_states=encoder_hidden_states,
         
     | 
| 1280 | 
         
            +
                        encoder_attention_mask=encoder_attention_mask,
         
     | 
| 1281 | 
         
            +
                        use_cache=use_cache,
         
     | 
| 1282 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 1283 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 1284 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 1285 | 
         
            +
                    )
         
     | 
| 1286 | 
         
            +
                    hidden_states = transformer_outputs[0]
         
     | 
| 1287 | 
         
            +
             
     | 
| 1288 | 
         
            +
                    # Set device for model parallelism
         
     | 
| 1289 | 
         
            +
                    if self.model_parallel:
         
     | 
| 1290 | 
         
            +
                        torch.cuda.set_device(self.transformer.first_device)
         
     | 
| 1291 | 
         
            +
                        hidden_states = hidden_states.to(self.lm_head.weight.device)
         
     | 
| 1292 | 
         
            +
             
     | 
| 1293 | 
         
            +
                    lm_logits = self.lm_head(hidden_states)
         
     | 
| 1294 | 
         
            +
                    lm_logits *= torch.tensor(float(self.output_logits_scale), dtype=lm_logits.dtype, device=lm_logits.device)
         
     | 
| 1295 | 
         
            +
             
     | 
| 1296 | 
         
            +
                    loss = None
         
     | 
| 1297 | 
         
            +
                    if labels is not None:
         
     | 
| 1298 | 
         
            +
                        # move labels to correct device to enable model parallelism
         
     | 
| 1299 | 
         
            +
                        labels = labels.to(lm_logits.device)
         
     | 
| 1300 | 
         
            +
                        # Shift so that tokens < n predict n
         
     | 
| 1301 | 
         
            +
                        shift_logits = lm_logits[..., :-1, :].contiguous()
         
     | 
| 1302 | 
         
            +
                        shift_labels = labels[..., 1:].contiguous()
         
     | 
| 1303 | 
         
            +
                        # Flatten the tokens
         
     | 
| 1304 | 
         
            +
                        loss_fct = CrossEntropyLoss()
         
     | 
| 1305 | 
         
            +
                        loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
         
     | 
| 1306 | 
         
            +
             
     | 
| 1307 | 
         
            +
                    if not return_dict:
         
     | 
| 1308 | 
         
            +
                        output = (lm_logits,) + transformer_outputs[1:]
         
     | 
| 1309 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 1310 | 
         
            +
             
     | 
| 1311 | 
         
            +
                    return CausalLMOutputWithCrossAttentions(
         
     | 
| 1312 | 
         
            +
                        loss=loss,
         
     | 
| 1313 | 
         
            +
                        logits=lm_logits,
         
     | 
| 1314 | 
         
            +
                        past_key_values=transformer_outputs.past_key_values,
         
     | 
| 1315 | 
         
            +
                        hidden_states=transformer_outputs.hidden_states,
         
     | 
| 1316 | 
         
            +
                        attentions=transformer_outputs.attentions,
         
     | 
| 1317 | 
         
            +
                        cross_attentions=transformer_outputs.cross_attentions,
         
     | 
| 1318 | 
         
            +
                    )
         
     | 
| 1319 | 
         
            +
             
     | 
| 1320 | 
         
            +
                @staticmethod
         
     | 
| 1321 | 
         
            +
                def _reorder_cache(
         
     | 
| 1322 | 
         
            +
                    past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
         
     | 
| 1323 | 
         
            +
                ) -> Tuple[Tuple[torch.Tensor]]:
         
     | 
| 1324 | 
         
            +
                    """
         
     | 
| 1325 | 
         
            +
                    This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
         
     | 
| 1326 | 
         
            +
                    [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
         
     | 
| 1327 | 
         
            +
                    beam_idx at every generation step.
         
     | 
| 1328 | 
         
            +
                    """
         
     | 
| 1329 | 
         
            +
                    return tuple(
         
     | 
| 1330 | 
         
            +
                        tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
         
     | 
| 1331 | 
         
            +
                        for layer_past in past_key_values
         
     | 
| 1332 | 
         
            +
                    )
         
     | 
| 1333 | 
         
            +
             
     | 
| 1334 | 
         
            +
             
     | 
| 1335 | 
         
            +
            @add_start_docstrings(
         
     | 
| 1336 | 
         
            +
                """
         
     | 
| 1337 | 
         
            +
                The CrystalCoder Model transformer with a sequence classification head on top (linear layer).
         
     | 
| 1338 | 
         
            +
             
     | 
| 1339 | 
         
            +
                [`CrystalCoderForSequenceClassification`] uses the last token in order to do the classification, as other causal models
         
     | 
| 1340 | 
         
            +
                (e.g. GPT-1) do.
         
     | 
| 1341 | 
         
            +
             
     | 
| 1342 | 
         
            +
                Since it does classification on the last token, it requires to know the position of the last token. If a
         
     | 
| 1343 | 
         
            +
                `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
         
     | 
| 1344 | 
         
            +
                no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
         
     | 
| 1345 | 
         
            +
                padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
         
     | 
| 1346 | 
         
            +
                each row of the batch).
         
     | 
| 1347 | 
         
            +
                """,
         
     | 
| 1348 | 
         
            +
                CrystalCoder_START_DOCSTRING,
         
     | 
| 1349 | 
         
            +
            )
         
     | 
| 1350 | 
         
            +
            class CrystalCoderForSequenceClassification(CrystalCoderPreTrainedModel):
         
     | 
| 1351 | 
         
            +
                _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"]
         
     | 
| 1352 | 
         
            +
                _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head.weight"]
         
     | 
| 1353 | 
         
            +
             
     | 
| 1354 | 
         
            +
                def __init__(self, config):
         
     | 
| 1355 | 
         
            +
                    super().__init__(config)
         
     | 
| 1356 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 1357 | 
         
            +
                    self.transformer = CrystalCoderModel(config)
         
     | 
| 1358 | 
         
            +
                    self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
         
     | 
| 1359 | 
         
            +
                    self.output_logits_scale = config.mup_output_alpha * config.mup_width_scale
         
     | 
| 1360 | 
         
            +
             
     | 
| 1361 | 
         
            +
                    # Model parallel
         
     | 
| 1362 | 
         
            +
                    self.model_parallel = False
         
     | 
| 1363 | 
         
            +
                    self.device_map = None
         
     | 
| 1364 | 
         
            +
             
     | 
| 1365 | 
         
            +
                    # Initialize weights and apply final processing
         
     | 
| 1366 | 
         
            +
                    self.post_init()
         
     | 
| 1367 | 
         
            +
             
     | 
| 1368 | 
         
            +
                @add_start_docstrings_to_model_forward(CrystalCoder_INPUTS_DOCSTRING)
         
     | 
| 1369 | 
         
            +
                @add_code_sample_docstrings(
         
     | 
| 1370 | 
         
            +
                    checkpoint="microsoft/DialogRPT-updown",
         
     | 
| 1371 | 
         
            +
                    output_type=SequenceClassifierOutputWithPast,
         
     | 
| 1372 | 
         
            +
                    config_class=_CONFIG_FOR_DOC,
         
     | 
| 1373 | 
         
            +
                )
         
     | 
| 1374 | 
         
            +
                def forward(
         
     | 
| 1375 | 
         
            +
                    self,
         
     | 
| 1376 | 
         
            +
                    input_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1377 | 
         
            +
                    past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
         
     | 
| 1378 | 
         
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 1379 | 
         
            +
                    token_type_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1380 | 
         
            +
                    position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1381 | 
         
            +
                    head_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 1382 | 
         
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 1383 | 
         
            +
                    labels: Optional[torch.LongTensor] = None,
         
     | 
| 1384 | 
         
            +
                    use_cache: Optional[bool] = None,
         
     | 
| 1385 | 
         
            +
                    output_attentions: Optional[bool] = None,
         
     | 
| 1386 | 
         
            +
                    output_hidden_states: Optional[bool] = None,
         
     | 
| 1387 | 
         
            +
                    return_dict: Optional[bool] = None,
         
     | 
| 1388 | 
         
            +
                ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
         
     | 
| 1389 | 
         
            +
                    r"""
         
     | 
| 1390 | 
         
            +
                    labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         
     | 
| 1391 | 
         
            +
                        Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
         
     | 
| 1392 | 
         
            +
                        config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
         
     | 
| 1393 | 
         
            +
                        `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
         
     | 
| 1394 | 
         
            +
                    """
         
     | 
| 1395 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1396 | 
         
            +
             
     | 
| 1397 | 
         
            +
                    transformer_outputs = self.transformer(
         
     | 
| 1398 | 
         
            +
                        input_ids,
         
     | 
| 1399 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 1400 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 1401 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 1402 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 1403 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 1404 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 1405 | 
         
            +
                        use_cache=use_cache,
         
     | 
| 1406 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 1407 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 1408 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 1409 | 
         
            +
                    )
         
     | 
| 1410 | 
         
            +
                    hidden_states = transformer_outputs[0]
         
     | 
| 1411 | 
         
            +
                    logits = self.score(hidden_states)
         
     | 
| 1412 | 
         
            +
                    logits *= torch.tensor(float(self.output_logits_scale), dtype=logits.dtype, device=logits.device)
         
     | 
| 1413 | 
         
            +
             
     | 
| 1414 | 
         
            +
                    if input_ids is not None:
         
     | 
| 1415 | 
         
            +
                        batch_size, sequence_length = input_ids.shape[:2]
         
     | 
| 1416 | 
         
            +
                    else:
         
     | 
| 1417 | 
         
            +
                        batch_size, sequence_length = inputs_embeds.shape[:2]
         
     | 
| 1418 | 
         
            +
             
     | 
| 1419 | 
         
            +
                    assert (
         
     | 
| 1420 | 
         
            +
                        self.config.pad_token_id is not None or batch_size == 1
         
     | 
| 1421 | 
         
            +
                    ), "Cannot handle batch sizes > 1 if no padding token is defined."
         
     | 
| 1422 | 
         
            +
                    if self.config.pad_token_id is None:
         
     | 
| 1423 | 
         
            +
                        sequence_lengths = -1
         
     | 
| 1424 | 
         
            +
                    else:
         
     | 
| 1425 | 
         
            +
                        if input_ids is not None:
         
     | 
| 1426 | 
         
            +
                            sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
         
     | 
| 1427 | 
         
            +
                        else:
         
     | 
| 1428 | 
         
            +
                            sequence_lengths = -1
         
     | 
| 1429 | 
         
            +
                            logger.warning(
         
     | 
| 1430 | 
         
            +
                                f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
         
     | 
| 1431 | 
         
            +
                                "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
         
     | 
| 1432 | 
         
            +
                            )
         
     | 
| 1433 | 
         
            +
             
     | 
| 1434 | 
         
            +
                    pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
         
     | 
| 1435 | 
         
            +
             
     | 
| 1436 | 
         
            +
                    loss = None
         
     | 
| 1437 | 
         
            +
                    if labels is not None:
         
     | 
| 1438 | 
         
            +
                        if self.config.problem_type is None:
         
     | 
| 1439 | 
         
            +
                            if self.num_labels == 1:
         
     | 
| 1440 | 
         
            +
                                self.config.problem_type = "regression"
         
     | 
| 1441 | 
         
            +
                            elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
         
     | 
| 1442 | 
         
            +
                                self.config.problem_type = "single_label_classification"
         
     | 
| 1443 | 
         
            +
                            else:
         
     | 
| 1444 | 
         
            +
                                self.config.problem_type = "multi_label_classification"
         
     | 
| 1445 | 
         
            +
             
     | 
| 1446 | 
         
            +
                        if self.config.problem_type == "regression":
         
     | 
| 1447 | 
         
            +
                            loss_fct = MSELoss()
         
     | 
| 1448 | 
         
            +
                            if self.num_labels == 1:
         
     | 
| 1449 | 
         
            +
                                loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
         
     | 
| 1450 | 
         
            +
                            else:
         
     | 
| 1451 | 
         
            +
                                loss = loss_fct(pooled_logits, labels)
         
     | 
| 1452 | 
         
            +
                        elif self.config.problem_type == "single_label_classification":
         
     | 
| 1453 | 
         
            +
                            loss_fct = CrossEntropyLoss()
         
     | 
| 1454 | 
         
            +
                            loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
         
     | 
| 1455 | 
         
            +
                        elif self.config.problem_type == "multi_label_classification":
         
     | 
| 1456 | 
         
            +
                            loss_fct = BCEWithLogitsLoss()
         
     | 
| 1457 | 
         
            +
                            loss = loss_fct(pooled_logits, labels)
         
     | 
| 1458 | 
         
            +
                    if not return_dict:
         
     | 
| 1459 | 
         
            +
                        output = (pooled_logits,) + transformer_outputs[1:]
         
     | 
| 1460 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 1461 | 
         
            +
             
     | 
| 1462 | 
         
            +
                    return SequenceClassifierOutputWithPast(
         
     | 
| 1463 | 
         
            +
                        loss=loss,
         
     | 
| 1464 | 
         
            +
                        logits=pooled_logits,
         
     | 
| 1465 | 
         
            +
                        past_key_values=transformer_outputs.past_key_values,
         
     | 
| 1466 | 
         
            +
                        hidden_states=transformer_outputs.hidden_states,
         
     | 
| 1467 | 
         
            +
                        attentions=transformer_outputs.attentions,
         
     | 
| 1468 | 
         
            +
                    )
         
     | 
| 1469 | 
         
            +
             
     | 
| 1470 | 
         
            +
             
     | 
| 1471 | 
         
            +
            @add_start_docstrings(
         
     | 
| 1472 | 
         
            +
                """
         
     | 
| 1473 | 
         
            +
                CrystalCoder Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
         
     | 
| 1474 | 
         
            +
                Named-Entity-Recognition (NER) tasks.
         
     | 
| 1475 | 
         
            +
                """,
         
     | 
| 1476 | 
         
            +
                CrystalCoder_START_DOCSTRING,
         
     | 
| 1477 | 
         
            +
            )
         
     | 
| 1478 | 
         
            +
            class CrystalCoderForTokenClassification(CrystalCoderPreTrainedModel):
         
     | 
| 1479 | 
         
            +
                def __init__(self, config):
         
     | 
| 1480 | 
         
            +
                    super().__init__(config)
         
     | 
| 1481 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 1482 | 
         
            +
             
     | 
| 1483 | 
         
            +
                    self.transformer = CrystalCoderModel(config)
         
     | 
| 1484 | 
         
            +
                    if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
         
     | 
| 1485 | 
         
            +
                        classifier_dropout = config.classifier_dropout
         
     | 
| 1486 | 
         
            +
                    elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
         
     | 
| 1487 | 
         
            +
                        classifier_dropout = config.hidden_dropout
         
     | 
| 1488 | 
         
            +
                    else:
         
     | 
| 1489 | 
         
            +
                        classifier_dropout = 0.1
         
     | 
| 1490 | 
         
            +
                    self.dropout = nn.Dropout(classifier_dropout)
         
     | 
| 1491 | 
         
            +
                    self.classifier = nn.Linear(config.hidden_size, config.num_labels)
         
     | 
| 1492 | 
         
            +
                    self.output_logits_scale = config.mup_output_alpha * config.mup_width_scale
         
     | 
| 1493 | 
         
            +
             
     | 
| 1494 | 
         
            +
                    # Model parallel
         
     | 
| 1495 | 
         
            +
                    self.model_parallel = False
         
     | 
| 1496 | 
         
            +
                    self.device_map = None
         
     | 
| 1497 | 
         
            +
             
     | 
| 1498 | 
         
            +
                    # Initialize weights and apply final processing
         
     | 
| 1499 | 
         
            +
                    self.post_init()
         
     | 
| 1500 | 
         
            +
             
     | 
| 1501 | 
         
            +
                @add_start_docstrings_to_model_forward(CrystalCoder_INPUTS_DOCSTRING)
         
     | 
| 1502 | 
         
            +
                # fmt: off
         
     | 
| 1503 | 
         
            +
                @add_code_sample_docstrings(
         
     | 
| 1504 | 
         
            +
                    checkpoint="brad1141/gpt2-finetuned-comp2",
         
     | 
| 1505 | 
         
            +
                    output_type=TokenClassifierOutput,
         
     | 
| 1506 | 
         
            +
                    config_class=_CONFIG_FOR_DOC,
         
     | 
| 1507 | 
         
            +
                    expected_loss=0.25,
         
     | 
| 1508 | 
         
            +
                    expected_output=["Lead", "Lead", "Lead", "Position", "Lead", "Lead", "Lead", "Lead", "Lead", "Lead", "Lead", "Lead"],
         
     | 
| 1509 | 
         
            +
                )
         
     | 
| 1510 | 
         
            +
                # fmt: on
         
     | 
| 1511 | 
         
            +
                def forward(
         
     | 
| 1512 | 
         
            +
                    self,
         
     | 
| 1513 | 
         
            +
                    input_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1514 | 
         
            +
                    past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
         
     | 
| 1515 | 
         
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 1516 | 
         
            +
                    token_type_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1517 | 
         
            +
                    position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1518 | 
         
            +
                    head_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 1519 | 
         
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 1520 | 
         
            +
                    labels: Optional[torch.LongTensor] = None,
         
     | 
| 1521 | 
         
            +
                    use_cache: Optional[bool] = None,
         
     | 
| 1522 | 
         
            +
                    output_attentions: Optional[bool] = None,
         
     | 
| 1523 | 
         
            +
                    output_hidden_states: Optional[bool] = None,
         
     | 
| 1524 | 
         
            +
                    return_dict: Optional[bool] = None,
         
     | 
| 1525 | 
         
            +
                ) -> Union[Tuple, TokenClassifierOutput]:
         
     | 
| 1526 | 
         
            +
                    r"""
         
     | 
| 1527 | 
         
            +
                    labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         
     | 
| 1528 | 
         
            +
                        Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
         
     | 
| 1529 | 
         
            +
                        config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
         
     | 
| 1530 | 
         
            +
                        `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
         
     | 
| 1531 | 
         
            +
                    """
         
     | 
| 1532 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1533 | 
         
            +
             
     | 
| 1534 | 
         
            +
                    transformer_outputs = self.transformer(
         
     | 
| 1535 | 
         
            +
                        input_ids,
         
     | 
| 1536 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 1537 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 1538 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 1539 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 1540 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 1541 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 1542 | 
         
            +
                        use_cache=use_cache,
         
     | 
| 1543 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 1544 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 1545 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 1546 | 
         
            +
                    )
         
     | 
| 1547 | 
         
            +
             
     | 
| 1548 | 
         
            +
                    hidden_states = transformer_outputs[0]
         
     | 
| 1549 | 
         
            +
                    hidden_states = self.dropout(hidden_states)
         
     | 
| 1550 | 
         
            +
                    logits = self.classifier(hidden_states)
         
     | 
| 1551 | 
         
            +
                    logits *= torch.tensor(float(self.output_logits_scale), dtype=logits.dtype, device=logits.device)
         
     | 
| 1552 | 
         
            +
             
     | 
| 1553 | 
         
            +
                    loss = None
         
     | 
| 1554 | 
         
            +
                    if labels is not None:
         
     | 
| 1555 | 
         
            +
                        labels = labels.to(logits.device)
         
     | 
| 1556 | 
         
            +
                        loss_fct = CrossEntropyLoss()
         
     | 
| 1557 | 
         
            +
                        loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
         
     | 
| 1558 | 
         
            +
             
     | 
| 1559 | 
         
            +
                    if not return_dict:
         
     | 
| 1560 | 
         
            +
                        output = (logits,) + transformer_outputs[2:]
         
     | 
| 1561 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 1562 | 
         
            +
             
     | 
| 1563 | 
         
            +
                    return TokenClassifierOutput(
         
     | 
| 1564 | 
         
            +
                        loss=loss,
         
     | 
| 1565 | 
         
            +
                        logits=logits,
         
     | 
| 1566 | 
         
            +
                        hidden_states=transformer_outputs.hidden_states,
         
     | 
| 1567 | 
         
            +
                        attentions=transformer_outputs.attentions,
         
     | 
| 1568 | 
         
            +
                    )
         
     | 
| 1569 | 
         
            +
             
     | 
| 1570 | 
         
            +
             
     | 
| 1571 | 
         
            +
            @add_start_docstrings(
         
     | 
| 1572 | 
         
            +
                """
         
     | 
| 1573 | 
         
            +
                The CrystalCoder Model transformer with a span classification head on top for extractive question-answering tasks like
         
     | 
| 1574 | 
         
            +
                SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
         
     | 
| 1575 | 
         
            +
                """,
         
     | 
| 1576 | 
         
            +
                CrystalCoder_START_DOCSTRING,
         
     | 
| 1577 | 
         
            +
            )
         
     | 
| 1578 | 
         
            +
            class CrystalCoderForQuestionAnswering(CrystalCoderPreTrainedModel):
         
     | 
| 1579 | 
         
            +
                _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"]
         
     | 
| 1580 | 
         
            +
                _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias", r"lm_head.weight"]
         
     | 
| 1581 | 
         
            +
             
     | 
| 1582 | 
         
            +
                def __init__(self, config):
         
     | 
| 1583 | 
         
            +
                    super().__init__(config)
         
     | 
| 1584 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 1585 | 
         
            +
                    self.transformer = CrystalCoderModel(config)
         
     | 
| 1586 | 
         
            +
                    self.qa_outputs = nn.Linear(config.hidden_size, 2)
         
     | 
| 1587 | 
         
            +
                    self.output_logits_scale = config.mup_output_alpha * config.mup_width_scale
         
     | 
| 1588 | 
         
            +
             
     | 
| 1589 | 
         
            +
                    # Model parallel
         
     | 
| 1590 | 
         
            +
                    self.model_parallel = False
         
     | 
| 1591 | 
         
            +
                    self.device_map = None
         
     | 
| 1592 | 
         
            +
                    self.gradient_checkpointing = False
         
     | 
| 1593 | 
         
            +
             
     | 
| 1594 | 
         
            +
                    # Initialize weights and apply final processing
         
     | 
| 1595 | 
         
            +
                    self.post_init()
         
     | 
| 1596 | 
         
            +
             
     | 
| 1597 | 
         
            +
                @add_start_docstrings_to_model_forward(CrystalCoder_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
         
     | 
| 1598 | 
         
            +
                def forward(
         
     | 
| 1599 | 
         
            +
                    self,
         
     | 
| 1600 | 
         
            +
                    input_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1601 | 
         
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 1602 | 
         
            +
                    token_type_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1603 | 
         
            +
                    position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1604 | 
         
            +
                    head_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 1605 | 
         
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 1606 | 
         
            +
                    start_positions: Optional[torch.LongTensor] = None,
         
     | 
| 1607 | 
         
            +
                    end_positions: Optional[torch.LongTensor] = None,
         
     | 
| 1608 | 
         
            +
                    output_attentions: Optional[bool] = None,
         
     | 
| 1609 | 
         
            +
                    output_hidden_states: Optional[bool] = None,
         
     | 
| 1610 | 
         
            +
                    return_dict: Optional[bool] = None,
         
     | 
| 1611 | 
         
            +
                ) -> Union[Tuple, QuestionAnsweringModelOutput]:
         
     | 
| 1612 | 
         
            +
                    r"""
         
     | 
| 1613 | 
         
            +
                    start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         
     | 
| 1614 | 
         
            +
                        Labels for position (index) of the start of the labelled span for computing the token classification loss.
         
     | 
| 1615 | 
         
            +
                        Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
         
     | 
| 1616 | 
         
            +
                        are not taken into account for computing the loss.
         
     | 
| 1617 | 
         
            +
                    end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         
     | 
| 1618 | 
         
            +
                        Labels for position (index) of the end of the labelled span for computing the token classification loss.
         
     | 
| 1619 | 
         
            +
                        Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
         
     | 
| 1620 | 
         
            +
                        are not taken into account for computing the loss.
         
     | 
| 1621 | 
         
            +
                    """
         
     | 
| 1622 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1623 | 
         
            +
             
     | 
| 1624 | 
         
            +
                    outputs = self.transformer(
         
     | 
| 1625 | 
         
            +
                        input_ids,
         
     | 
| 1626 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 1627 | 
         
            +
                        token_type_ids=token_type_ids,
         
     | 
| 1628 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 1629 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 1630 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 1631 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 1632 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 1633 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 1634 | 
         
            +
                    )
         
     | 
| 1635 | 
         
            +
             
     | 
| 1636 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 1637 | 
         
            +
             
     | 
| 1638 | 
         
            +
                    logits = self.qa_outputs(sequence_output)
         
     | 
| 1639 | 
         
            +
                    logits *= torch.tensor(float(self.output_logits_scale), dtype=logits.dtype, device=logits.device)
         
     | 
| 1640 | 
         
            +
                    start_logits, end_logits = logits.split(1, dim=-1)
         
     | 
| 1641 | 
         
            +
                    start_logits = start_logits.squeeze(-1).contiguous()
         
     | 
| 1642 | 
         
            +
                    end_logits = end_logits.squeeze(-1).contiguous()
         
     | 
| 1643 | 
         
            +
             
     | 
| 1644 | 
         
            +
                    total_loss = None
         
     | 
| 1645 | 
         
            +
                    if start_positions is not None and end_positions is not None:
         
     | 
| 1646 | 
         
            +
                        # If we are on multi-GPU, split add a dimension
         
     | 
| 1647 | 
         
            +
                        if len(start_positions.size()) > 1:
         
     | 
| 1648 | 
         
            +
                            start_positions = start_positions.squeeze(-1).to(start_logits.device)
         
     | 
| 1649 | 
         
            +
                        if len(end_positions.size()) > 1:
         
     | 
| 1650 | 
         
            +
                            end_positions = end_positions.squeeze(-1).to(end_logits.device)
         
     | 
| 1651 | 
         
            +
                        # sometimes the start/end positions are outside our model inputs, we ignore these terms
         
     | 
| 1652 | 
         
            +
                        ignored_index = start_logits.size(1)
         
     | 
| 1653 | 
         
            +
                        start_positions = start_positions.clamp(0, ignored_index)
         
     | 
| 1654 | 
         
            +
                        end_positions = end_positions.clamp(0, ignored_index)
         
     | 
| 1655 | 
         
            +
             
     | 
| 1656 | 
         
            +
                        loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
         
     | 
| 1657 | 
         
            +
                        start_loss = loss_fct(start_logits, start_positions)
         
     | 
| 1658 | 
         
            +
                        end_loss = loss_fct(end_logits, end_positions)
         
     | 
| 1659 | 
         
            +
                        total_loss = (start_loss + end_loss) / 2
         
     | 
| 1660 | 
         
            +
             
     | 
| 1661 | 
         
            +
                    if not return_dict:
         
     | 
| 1662 | 
         
            +
                        output = (start_logits, end_logits) + outputs[2:]
         
     | 
| 1663 | 
         
            +
                        return ((total_loss,) + output) if total_loss is not None else output
         
     | 
| 1664 | 
         
            +
             
     | 
| 1665 | 
         
            +
                    return QuestionAnsweringModelOutput(
         
     | 
| 1666 | 
         
            +
                        loss=total_loss,
         
     | 
| 1667 | 
         
            +
                        start_logits=start_logits,
         
     | 
| 1668 | 
         
            +
                        end_logits=end_logits,
         
     | 
| 1669 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 1670 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 1671 | 
         
            +
                    )
         
     | 
    	
        special_tokens_map.json
    ADDED
    
    | 
         @@ -0,0 +1,47 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "additional_special_tokens": [
         
     | 
| 3 | 
         
            +
                "<|fim_prefix|>",
         
     | 
| 4 | 
         
            +
                "<|fim_middle|>",
         
     | 
| 5 | 
         
            +
                "<|fim_suffix|>",
         
     | 
| 6 | 
         
            +
                "<|fim_pad|>",
         
     | 
| 7 | 
         
            +
                "<|filename|>",
         
     | 
| 8 | 
         
            +
                "<|gh_stars|>",
         
     | 
| 9 | 
         
            +
                "<|issue_start|>",
         
     | 
| 10 | 
         
            +
                "<|issue_comment|>",
         
     | 
| 11 | 
         
            +
                "<|issue_closed|>",
         
     | 
| 12 | 
         
            +
                "<|jupyter_start|>",
         
     | 
| 13 | 
         
            +
                "<|jupyter_text|>",
         
     | 
| 14 | 
         
            +
                "<|jupyter_code|>",
         
     | 
| 15 | 
         
            +
                "<|jupyter_output|>",
         
     | 
| 16 | 
         
            +
                "<|empty_output|>",
         
     | 
| 17 | 
         
            +
                "<|commit_before|>",
         
     | 
| 18 | 
         
            +
                "<|commit_msg|>",
         
     | 
| 19 | 
         
            +
                "<|commit_after|>",
         
     | 
| 20 | 
         
            +
                "<|reponame|>",
         
     | 
| 21 | 
         
            +
                "<|im_start|>",
         
     | 
| 22 | 
         
            +
                "<|im_end|>",
         
     | 
| 23 | 
         
            +
                "<|sys_start|>",
         
     | 
| 24 | 
         
            +
                "<|sys_end|>"
         
     | 
| 25 | 
         
            +
              ],
         
     | 
| 26 | 
         
            +
              "bos_token": {
         
     | 
| 27 | 
         
            +
                "content": "<s>",
         
     | 
| 28 | 
         
            +
                "lstrip": false,
         
     | 
| 29 | 
         
            +
                "normalized": false,
         
     | 
| 30 | 
         
            +
                "rstrip": false,
         
     | 
| 31 | 
         
            +
                "single_word": false
         
     | 
| 32 | 
         
            +
              },
         
     | 
| 33 | 
         
            +
              "eos_token": {
         
     | 
| 34 | 
         
            +
                "content": "</s>",
         
     | 
| 35 | 
         
            +
                "lstrip": false,
         
     | 
| 36 | 
         
            +
                "normalized": false,
         
     | 
| 37 | 
         
            +
                "rstrip": false,
         
     | 
| 38 | 
         
            +
                "single_word": false
         
     | 
| 39 | 
         
            +
              },
         
     | 
| 40 | 
         
            +
              "unk_token": {
         
     | 
| 41 | 
         
            +
                "content": "<unk>",
         
     | 
| 42 | 
         
            +
                "lstrip": false,
         
     | 
| 43 | 
         
            +
                "normalized": false,
         
     | 
| 44 | 
         
            +
                "rstrip": false,
         
     | 
| 45 | 
         
            +
                "single_word": false
         
     | 
| 46 | 
         
            +
              }
         
     | 
| 47 | 
         
            +
            }
         
     | 
    	
        tokenization_crystalcoder_fast.py
    ADDED
    
    | 
         @@ -0,0 +1,144 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
             
     | 
| 2 | 
         
            +
            import os
         
     | 
| 3 | 
         
            +
            from shutil import copyfile
         
     | 
| 4 | 
         
            +
            from typing import Optional, Tuple
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            from tokenizers import processors
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
         
     | 
| 9 | 
         
            +
            from transformers.utils import is_sentencepiece_available, logging
         
     | 
| 10 | 
         
            +
            from transformers.utils.versions import require_version
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            require_version("tokenizers>=0.13.3")
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            logger = logging.get_logger(__name__)
         
     | 
| 18 | 
         
            +
            VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model", "tokenizer_file": "tokenizer.json"}
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            # fmt: off
         
     | 
| 21 | 
         
            +
            DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your \
         
     | 
| 22 | 
         
            +
            answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\
         
     | 
| 23 | 
         
            +
             that your responses are socially unbiased and positive in nature.
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
            If a question does not make any sense, or is not factually coherent, explain why instead of answering something not \
         
     | 
| 26 | 
         
            +
            correct. If you don't know the answer to a question, please don't share false information."""
         
     | 
| 27 | 
         
            +
            # fmt: on
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
            class CrystalCoderTokenizerFast(PreTrainedTokenizerFast):
         
     | 
| 31 | 
         
            +
                
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
                vocab_files_names = VOCAB_FILES_NAMES
         
     | 
| 34 | 
         
            +
                slow_tokenizer_class = None
         
     | 
| 35 | 
         
            +
                padding_side = "left"
         
     | 
| 36 | 
         
            +
                model_input_names = ["input_ids", "attention_mask"]
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
                def __init__(
         
     | 
| 39 | 
         
            +
                    self,
         
     | 
| 40 | 
         
            +
                    vocab_file=None,
         
     | 
| 41 | 
         
            +
                    tokenizer_file=None,
         
     | 
| 42 | 
         
            +
                    clean_up_tokenization_spaces=False,
         
     | 
| 43 | 
         
            +
                    unk_token="<|unk|>",
         
     | 
| 44 | 
         
            +
                    bos_token="<|startoftext|>",
         
     | 
| 45 | 
         
            +
                    eos_token="<|endoftext|>",
         
     | 
| 46 | 
         
            +
                    add_bos_token=False,
         
     | 
| 47 | 
         
            +
                    add_eos_token=False,
         
     | 
| 48 | 
         
            +
                    use_default_system_prompt=False,
         
     | 
| 49 | 
         
            +
                    **kwargs,
         
     | 
| 50 | 
         
            +
                ):
         
     | 
| 51 | 
         
            +
                    super().__init__(
         
     | 
| 52 | 
         
            +
                        vocab_file=vocab_file,
         
     | 
| 53 | 
         
            +
                        tokenizer_file=tokenizer_file,
         
     | 
| 54 | 
         
            +
                        clean_up_tokenization_spaces=clean_up_tokenization_spaces,
         
     | 
| 55 | 
         
            +
                        unk_token=unk_token,
         
     | 
| 56 | 
         
            +
                        bos_token=bos_token,
         
     | 
| 57 | 
         
            +
                        eos_token=eos_token,
         
     | 
| 58 | 
         
            +
                        use_default_system_prompt=use_default_system_prompt,
         
     | 
| 59 | 
         
            +
                        **kwargs,
         
     | 
| 60 | 
         
            +
                    )
         
     | 
| 61 | 
         
            +
                    self._add_bos_token = add_bos_token
         
     | 
| 62 | 
         
            +
                    self._add_eos_token = add_eos_token
         
     | 
| 63 | 
         
            +
                    self.update_post_processor()
         
     | 
| 64 | 
         
            +
                    self.use_default_system_prompt = use_default_system_prompt
         
     | 
| 65 | 
         
            +
                    self.vocab_file = vocab_file
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
                @property
         
     | 
| 68 | 
         
            +
                def can_save_slow_tokenizer(self) -> bool:
         
     | 
| 69 | 
         
            +
                    return os.path.isfile(self.vocab_file) if self.vocab_file else False
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                def update_post_processor(self):
         
     | 
| 72 | 
         
            +
                    """
         
     | 
| 73 | 
         
            +
                    Updates the underlying post processor with the current `bos_token` and `eos_token`.
         
     | 
| 74 | 
         
            +
                    """
         
     | 
| 75 | 
         
            +
                    bos = self.bos_token
         
     | 
| 76 | 
         
            +
                    bos_token_id = self.bos_token_id
         
     | 
| 77 | 
         
            +
                    if bos is None and self.add_bos_token:
         
     | 
| 78 | 
         
            +
                        raise ValueError("add_bos_token = True but bos_token = None")
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
                    eos = self.eos_token
         
     | 
| 81 | 
         
            +
                    eos_token_id = self.eos_token_id
         
     | 
| 82 | 
         
            +
                    if eos is None and self.add_eos_token:
         
     | 
| 83 | 
         
            +
                        raise ValueError("add_eos_token = True but eos_token = None")
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
                    single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
         
     | 
| 86 | 
         
            +
                    pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                    special_tokens = []
         
     | 
| 89 | 
         
            +
                    if self.add_bos_token:
         
     | 
| 90 | 
         
            +
                        special_tokens.append((bos, bos_token_id))
         
     | 
| 91 | 
         
            +
                    if self.add_eos_token:
         
     | 
| 92 | 
         
            +
                        special_tokens.append((eos, eos_token_id))
         
     | 
| 93 | 
         
            +
                    self._tokenizer.post_processor = processors.TemplateProcessing(
         
     | 
| 94 | 
         
            +
                        single=single, pair=pair, special_tokens=special_tokens
         
     | 
| 95 | 
         
            +
                    )
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
                @property
         
     | 
| 98 | 
         
            +
                def add_eos_token(self):
         
     | 
| 99 | 
         
            +
                    return self._add_eos_token
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                @property
         
     | 
| 102 | 
         
            +
                def add_bos_token(self):
         
     | 
| 103 | 
         
            +
                    return self._add_bos_token
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
                @add_eos_token.setter
         
     | 
| 106 | 
         
            +
                def add_eos_token(self, value):
         
     | 
| 107 | 
         
            +
                    self._add_eos_token = value
         
     | 
| 108 | 
         
            +
                    self.update_post_processor()
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
                @add_bos_token.setter
         
     | 
| 111 | 
         
            +
                def add_bos_token(self, value):
         
     | 
| 112 | 
         
            +
                    self._add_bos_token = value
         
     | 
| 113 | 
         
            +
                    self.update_post_processor()
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
                def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
         
     | 
| 116 | 
         
            +
                    if not self.can_save_slow_tokenizer:
         
     | 
| 117 | 
         
            +
                        raise ValueError(
         
     | 
| 118 | 
         
            +
                            "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
         
     | 
| 119 | 
         
            +
                            "tokenizer."
         
     | 
| 120 | 
         
            +
                        )
         
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
                    if not os.path.isdir(save_directory):
         
     | 
| 123 | 
         
            +
                        logger.error(f"Vocabulary path ({save_directory}) should be a directory")
         
     | 
| 124 | 
         
            +
                        return
         
     | 
| 125 | 
         
            +
                    out_vocab_file = os.path.join(
         
     | 
| 126 | 
         
            +
                        save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
         
     | 
| 127 | 
         
            +
                    )
         
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
                    if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
         
     | 
| 130 | 
         
            +
                        copyfile(self.vocab_file, out_vocab_file)
         
     | 
| 131 | 
         
            +
             
     | 
| 132 | 
         
            +
                    return (out_vocab_file,)
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
                def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
         
     | 
| 136 | 
         
            +
                    bos_token_id = [self.bos_token_id] if self.add_bos_token else []
         
     | 
| 137 | 
         
            +
                    eos_token_id = [self.eos_token_id] if self.add_eos_token else []
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
                    output = bos_token_id + token_ids_0 + eos_token_id
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
                    if token_ids_1 is not None:
         
     | 
| 142 | 
         
            +
                        output = output + bos_token_id + token_ids_1 + eos_token_id
         
     | 
| 143 | 
         
            +
             
     | 
| 144 | 
         
            +
                    return output
         
     | 
    	
        tokenizer.json
    ADDED
    
    | 
         The diff for this file is too large to render. 
		See raw diff 
     | 
| 
         | 
    	
        tokenizer_config.json
    ADDED
    
    | 
         @@ -0,0 +1,245 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "added_tokens_decoder": {
         
     | 
| 3 | 
         
            +
                "0": {
         
     | 
| 4 | 
         
            +
                  "content": "<unk>",
         
     | 
| 5 | 
         
            +
                  "lstrip": false,
         
     | 
| 6 | 
         
            +
                  "normalized": false,
         
     | 
| 7 | 
         
            +
                  "rstrip": false,
         
     | 
| 8 | 
         
            +
                  "single_word": false,
         
     | 
| 9 | 
         
            +
                  "special": true
         
     | 
| 10 | 
         
            +
                },
         
     | 
| 11 | 
         
            +
                "1": {
         
     | 
| 12 | 
         
            +
                  "content": "<s>",
         
     | 
| 13 | 
         
            +
                  "lstrip": false,
         
     | 
| 14 | 
         
            +
                  "normalized": false,
         
     | 
| 15 | 
         
            +
                  "rstrip": false,
         
     | 
| 16 | 
         
            +
                  "single_word": false,
         
     | 
| 17 | 
         
            +
                  "special": true
         
     | 
| 18 | 
         
            +
                },
         
     | 
| 19 | 
         
            +
                "2": {
         
     | 
| 20 | 
         
            +
                  "content": "</s>",
         
     | 
| 21 | 
         
            +
                  "lstrip": false,
         
     | 
| 22 | 
         
            +
                  "normalized": false,
         
     | 
| 23 | 
         
            +
                  "rstrip": false,
         
     | 
| 24 | 
         
            +
                  "single_word": false,
         
     | 
| 25 | 
         
            +
                  "special": true
         
     | 
| 26 | 
         
            +
                },
         
     | 
| 27 | 
         
            +
                "32000": {
         
     | 
| 28 | 
         
            +
                  "content": "<|fim_prefix|>",
         
     | 
| 29 | 
         
            +
                  "lstrip": false,
         
     | 
| 30 | 
         
            +
                  "normalized": false,
         
     | 
| 31 | 
         
            +
                  "rstrip": false,
         
     | 
| 32 | 
         
            +
                  "single_word": false,
         
     | 
| 33 | 
         
            +
                  "special": true
         
     | 
| 34 | 
         
            +
                },
         
     | 
| 35 | 
         
            +
                "32001": {
         
     | 
| 36 | 
         
            +
                  "content": "<|fim_middle|>",
         
     | 
| 37 | 
         
            +
                  "lstrip": false,
         
     | 
| 38 | 
         
            +
                  "normalized": false,
         
     | 
| 39 | 
         
            +
                  "rstrip": false,
         
     | 
| 40 | 
         
            +
                  "single_word": false,
         
     | 
| 41 | 
         
            +
                  "special": true
         
     | 
| 42 | 
         
            +
                },
         
     | 
| 43 | 
         
            +
                "32002": {
         
     | 
| 44 | 
         
            +
                  "content": "<|fim_suffix|>",
         
     | 
| 45 | 
         
            +
                  "lstrip": false,
         
     | 
| 46 | 
         
            +
                  "normalized": false,
         
     | 
| 47 | 
         
            +
                  "rstrip": false,
         
     | 
| 48 | 
         
            +
                  "single_word": false,
         
     | 
| 49 | 
         
            +
                  "special": true
         
     | 
| 50 | 
         
            +
                },
         
     | 
| 51 | 
         
            +
                "32003": {
         
     | 
| 52 | 
         
            +
                  "content": "<|fim_pad|>",
         
     | 
| 53 | 
         
            +
                  "lstrip": false,
         
     | 
| 54 | 
         
            +
                  "normalized": false,
         
     | 
| 55 | 
         
            +
                  "rstrip": false,
         
     | 
| 56 | 
         
            +
                  "single_word": false,
         
     | 
| 57 | 
         
            +
                  "special": true
         
     | 
| 58 | 
         
            +
                },
         
     | 
| 59 | 
         
            +
                "32004": {
         
     | 
| 60 | 
         
            +
                  "content": "<|filename|>",
         
     | 
| 61 | 
         
            +
                  "lstrip": false,
         
     | 
| 62 | 
         
            +
                  "normalized": false,
         
     | 
| 63 | 
         
            +
                  "rstrip": false,
         
     | 
| 64 | 
         
            +
                  "single_word": false,
         
     | 
| 65 | 
         
            +
                  "special": true
         
     | 
| 66 | 
         
            +
                },
         
     | 
| 67 | 
         
            +
                "32005": {
         
     | 
| 68 | 
         
            +
                  "content": "<|gh_stars|>",
         
     | 
| 69 | 
         
            +
                  "lstrip": false,
         
     | 
| 70 | 
         
            +
                  "normalized": false,
         
     | 
| 71 | 
         
            +
                  "rstrip": false,
         
     | 
| 72 | 
         
            +
                  "single_word": false,
         
     | 
| 73 | 
         
            +
                  "special": true
         
     | 
| 74 | 
         
            +
                },
         
     | 
| 75 | 
         
            +
                "32006": {
         
     | 
| 76 | 
         
            +
                  "content": "<|issue_start|>",
         
     | 
| 77 | 
         
            +
                  "lstrip": false,
         
     | 
| 78 | 
         
            +
                  "normalized": false,
         
     | 
| 79 | 
         
            +
                  "rstrip": false,
         
     | 
| 80 | 
         
            +
                  "single_word": false,
         
     | 
| 81 | 
         
            +
                  "special": true
         
     | 
| 82 | 
         
            +
                },
         
     | 
| 83 | 
         
            +
                "32007": {
         
     | 
| 84 | 
         
            +
                  "content": "<|issue_comment|>",
         
     | 
| 85 | 
         
            +
                  "lstrip": false,
         
     | 
| 86 | 
         
            +
                  "normalized": false,
         
     | 
| 87 | 
         
            +
                  "rstrip": false,
         
     | 
| 88 | 
         
            +
                  "single_word": false,
         
     | 
| 89 | 
         
            +
                  "special": true
         
     | 
| 90 | 
         
            +
                },
         
     | 
| 91 | 
         
            +
                "32008": {
         
     | 
| 92 | 
         
            +
                  "content": "<|issue_closed|>",
         
     | 
| 93 | 
         
            +
                  "lstrip": false,
         
     | 
| 94 | 
         
            +
                  "normalized": false,
         
     | 
| 95 | 
         
            +
                  "rstrip": false,
         
     | 
| 96 | 
         
            +
                  "single_word": false,
         
     | 
| 97 | 
         
            +
                  "special": true
         
     | 
| 98 | 
         
            +
                },
         
     | 
| 99 | 
         
            +
                "32009": {
         
     | 
| 100 | 
         
            +
                  "content": "<|jupyter_start|>",
         
     | 
| 101 | 
         
            +
                  "lstrip": false,
         
     | 
| 102 | 
         
            +
                  "normalized": false,
         
     | 
| 103 | 
         
            +
                  "rstrip": false,
         
     | 
| 104 | 
         
            +
                  "single_word": false,
         
     | 
| 105 | 
         
            +
                  "special": true
         
     | 
| 106 | 
         
            +
                },
         
     | 
| 107 | 
         
            +
                "32010": {
         
     | 
| 108 | 
         
            +
                  "content": "<|jupyter_text|>",
         
     | 
| 109 | 
         
            +
                  "lstrip": false,
         
     | 
| 110 | 
         
            +
                  "normalized": false,
         
     | 
| 111 | 
         
            +
                  "rstrip": false,
         
     | 
| 112 | 
         
            +
                  "single_word": false,
         
     | 
| 113 | 
         
            +
                  "special": true
         
     | 
| 114 | 
         
            +
                },
         
     | 
| 115 | 
         
            +
                "32011": {
         
     | 
| 116 | 
         
            +
                  "content": "<|jupyter_code|>",
         
     | 
| 117 | 
         
            +
                  "lstrip": false,
         
     | 
| 118 | 
         
            +
                  "normalized": false,
         
     | 
| 119 | 
         
            +
                  "rstrip": false,
         
     | 
| 120 | 
         
            +
                  "single_word": false,
         
     | 
| 121 | 
         
            +
                  "special": true
         
     | 
| 122 | 
         
            +
                },
         
     | 
| 123 | 
         
            +
                "32012": {
         
     | 
| 124 | 
         
            +
                  "content": "<|jupyter_output|>",
         
     | 
| 125 | 
         
            +
                  "lstrip": false,
         
     | 
| 126 | 
         
            +
                  "normalized": false,
         
     | 
| 127 | 
         
            +
                  "rstrip": false,
         
     | 
| 128 | 
         
            +
                  "single_word": false,
         
     | 
| 129 | 
         
            +
                  "special": true
         
     | 
| 130 | 
         
            +
                },
         
     | 
| 131 | 
         
            +
                "32013": {
         
     | 
| 132 | 
         
            +
                  "content": "<|empty_output|>",
         
     | 
| 133 | 
         
            +
                  "lstrip": false,
         
     | 
| 134 | 
         
            +
                  "normalized": false,
         
     | 
| 135 | 
         
            +
                  "rstrip": false,
         
     | 
| 136 | 
         
            +
                  "single_word": false,
         
     | 
| 137 | 
         
            +
                  "special": true
         
     | 
| 138 | 
         
            +
                },
         
     | 
| 139 | 
         
            +
                "32014": {
         
     | 
| 140 | 
         
            +
                  "content": "<|commit_before|>",
         
     | 
| 141 | 
         
            +
                  "lstrip": false,
         
     | 
| 142 | 
         
            +
                  "normalized": false,
         
     | 
| 143 | 
         
            +
                  "rstrip": false,
         
     | 
| 144 | 
         
            +
                  "single_word": false,
         
     | 
| 145 | 
         
            +
                  "special": true
         
     | 
| 146 | 
         
            +
                },
         
     | 
| 147 | 
         
            +
                "32015": {
         
     | 
| 148 | 
         
            +
                  "content": "<|commit_msg|>",
         
     | 
| 149 | 
         
            +
                  "lstrip": false,
         
     | 
| 150 | 
         
            +
                  "normalized": false,
         
     | 
| 151 | 
         
            +
                  "rstrip": false,
         
     | 
| 152 | 
         
            +
                  "single_word": false,
         
     | 
| 153 | 
         
            +
                  "special": true
         
     | 
| 154 | 
         
            +
                },
         
     | 
| 155 | 
         
            +
                "32016": {
         
     | 
| 156 | 
         
            +
                  "content": "<|commit_after|>",
         
     | 
| 157 | 
         
            +
                  "lstrip": false,
         
     | 
| 158 | 
         
            +
                  "normalized": false,
         
     | 
| 159 | 
         
            +
                  "rstrip": false,
         
     | 
| 160 | 
         
            +
                  "single_word": false,
         
     | 
| 161 | 
         
            +
                  "special": true
         
     | 
| 162 | 
         
            +
                },
         
     | 
| 163 | 
         
            +
                "32017": {
         
     | 
| 164 | 
         
            +
                  "content": "<|reponame|>",
         
     | 
| 165 | 
         
            +
                  "lstrip": false,
         
     | 
| 166 | 
         
            +
                  "normalized": false,
         
     | 
| 167 | 
         
            +
                  "rstrip": false,
         
     | 
| 168 | 
         
            +
                  "single_word": false,
         
     | 
| 169 | 
         
            +
                  "special": true
         
     | 
| 170 | 
         
            +
                },
         
     | 
| 171 | 
         
            +
                "32018": {
         
     | 
| 172 | 
         
            +
                  "content": "<|im_start|>",
         
     | 
| 173 | 
         
            +
                  "lstrip": false,
         
     | 
| 174 | 
         
            +
                  "normalized": false,
         
     | 
| 175 | 
         
            +
                  "rstrip": false,
         
     | 
| 176 | 
         
            +
                  "single_word": false,
         
     | 
| 177 | 
         
            +
                  "special": true
         
     | 
| 178 | 
         
            +
                },
         
     | 
| 179 | 
         
            +
                "32019": {
         
     | 
| 180 | 
         
            +
                  "content": "<|im_end|>",
         
     | 
| 181 | 
         
            +
                  "lstrip": false,
         
     | 
| 182 | 
         
            +
                  "normalized": false,
         
     | 
| 183 | 
         
            +
                  "rstrip": false,
         
     | 
| 184 | 
         
            +
                  "single_word": false,
         
     | 
| 185 | 
         
            +
                  "special": true
         
     | 
| 186 | 
         
            +
                },
         
     | 
| 187 | 
         
            +
                "32020": {
         
     | 
| 188 | 
         
            +
                  "content": "<|sys_start|>",
         
     | 
| 189 | 
         
            +
                  "lstrip": false,
         
     | 
| 190 | 
         
            +
                  "normalized": false,
         
     | 
| 191 | 
         
            +
                  "rstrip": false,
         
     | 
| 192 | 
         
            +
                  "single_word": false,
         
     | 
| 193 | 
         
            +
                  "special": true
         
     | 
| 194 | 
         
            +
                },
         
     | 
| 195 | 
         
            +
                "32021": {
         
     | 
| 196 | 
         
            +
                  "content": "<|sys_end|>",
         
     | 
| 197 | 
         
            +
                  "lstrip": false,
         
     | 
| 198 | 
         
            +
                  "normalized": false,
         
     | 
| 199 | 
         
            +
                  "rstrip": false,
         
     | 
| 200 | 
         
            +
                  "single_word": false,
         
     | 
| 201 | 
         
            +
                  "special": true
         
     | 
| 202 | 
         
            +
                }
         
     | 
| 203 | 
         
            +
              },
         
     | 
| 204 | 
         
            +
              "additional_special_tokens": [
         
     | 
| 205 | 
         
            +
                "<|fim_prefix|>",
         
     | 
| 206 | 
         
            +
                "<|fim_middle|>",
         
     | 
| 207 | 
         
            +
                "<|fim_suffix|>",
         
     | 
| 208 | 
         
            +
                "<|fim_pad|>",
         
     | 
| 209 | 
         
            +
                "<|filename|>",
         
     | 
| 210 | 
         
            +
                "<|gh_stars|>",
         
     | 
| 211 | 
         
            +
                "<|issue_start|>",
         
     | 
| 212 | 
         
            +
                "<|issue_comment|>",
         
     | 
| 213 | 
         
            +
                "<|issue_closed|>",
         
     | 
| 214 | 
         
            +
                "<|jupyter_start|>",
         
     | 
| 215 | 
         
            +
                "<|jupyter_text|>",
         
     | 
| 216 | 
         
            +
                "<|jupyter_code|>",
         
     | 
| 217 | 
         
            +
                "<|jupyter_output|>",
         
     | 
| 218 | 
         
            +
                "<|empty_output|>",
         
     | 
| 219 | 
         
            +
                "<|commit_before|>",
         
     | 
| 220 | 
         
            +
                "<|commit_msg|>",
         
     | 
| 221 | 
         
            +
                "<|commit_after|>",
         
     | 
| 222 | 
         
            +
                "<|reponame|>",
         
     | 
| 223 | 
         
            +
                "<|im_start|>",
         
     | 
| 224 | 
         
            +
                "<|im_end|>",
         
     | 
| 225 | 
         
            +
                "<|sys_start|>",
         
     | 
| 226 | 
         
            +
                "<|sys_end|>"
         
     | 
| 227 | 
         
            +
              ],
         
     | 
| 228 | 
         
            +
              "auto_map": {
         
     | 
| 229 | 
         
            +
                "AutoTokenizer": [
         
     | 
| 230 | 
         
            +
                  null,
         
     | 
| 231 | 
         
            +
                  "tokenization_crystalcoder_fast.CrystalCoderTokenizerFast"
         
     | 
| 232 | 
         
            +
                ]
         
     | 
| 233 | 
         
            +
              },
         
     | 
| 234 | 
         
            +
              "bos_token": "<s>",
         
     | 
| 235 | 
         
            +
              "clean_up_tokenization_spaces": false,
         
     | 
| 236 | 
         
            +
              "eos_token": "</s>",
         
     | 
| 237 | 
         
            +
              "legacy": false,
         
     | 
| 238 | 
         
            +
              "model_max_length": 1000000000000000019884624838656,
         
     | 
| 239 | 
         
            +
              "pad_token": null,
         
     | 
| 240 | 
         
            +
              "padding_side": "right",
         
     | 
| 241 | 
         
            +
              "sp_model_kwargs": {},
         
     | 
| 242 | 
         
            +
              "tokenizer_class": "CrystalCoderTokenizer",
         
     | 
| 243 | 
         
            +
              "unk_token": "<unk>",
         
     | 
| 244 | 
         
            +
              "use_default_system_prompt": false
         
     | 
| 245 | 
         
            +
            }
         
     |