--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: Lambent/cosmoem-4x1b model-index: - name: lora-out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: Lambent/cosmoem-4x1b model_type: AutoModelForCausalLM tokenizer_type: LlamaTokenizer trust_remote_code: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: HuggingFaceTB/cosmopedia-100k type: completion - path: Vezora/Tested-22k-Python-Alpaca type: alpaca dataset_prepared_path: prepared-cosmoem val_set_size: 0.05 output_dir: ./lora-out sequence_len: 2048 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 128 lora_alpha: 16 lora_dropout: 0.1 lora_target_linear: true lora_fan_in_fan_out: wandb_project: cosmoem-cosmo100 wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 16 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.001 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 2.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.002 fsdp: fsdp_config: special_tokens: ```

# lora-out This model is a fine-tuned version of [Lambent/cosmoem-4x1b](https://huggingface.co/Lambent/cosmoem-4x1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9599 | 0.0 | 1 | 0.9550 | | 0.9077 | 0.25 | 672 | 0.9459 | | 0.919 | 0.5 | 1344 | 0.9439 | | 0.9228 | 0.75 | 2016 | 0.9391 | | 0.9236 | 1.0 | 2688 | 0.9382 | ### Framework versions - PEFT 0.9.0 - Transformers 4.40.0.dev0 - Pytorch 2.1.2+cu118 - Datasets 2.18.0 - Tokenizers 0.15.0