Update README.md
Browse files
README.md
CHANGED
|
@@ -30,11 +30,27 @@ This model is quantized in 8-bit and trained with question and answer pairs for
|
|
| 30 |
|
| 31 |
```python
|
| 32 |
from peft import PeftModel, PeftConfig
|
| 33 |
-
from transformers import AutoModelForCausalLM
|
| 34 |
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
| 36 |
base_model = AutoModelForCausalLM.from_pretrained("google/gemma-2b")
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
```
|
| 39 |
|
| 40 |
## Training Details
|
|
|
|
| 30 |
|
| 31 |
```python
|
| 32 |
from peft import PeftModel, PeftConfig
|
| 33 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 34 |
|
| 35 |
+
# Load the PEFT configuration
|
| 36 |
+
config = PeftConfig.from_pretrained("Lei-bw/text-to-sql-fm")
|
| 37 |
+
|
| 38 |
+
# Load the base model
|
| 39 |
base_model = AutoModelForCausalLM.from_pretrained("google/gemma-2b")
|
| 40 |
+
|
| 41 |
+
# Load the fine-tuned model using PEFT
|
| 42 |
+
model = PeftModel.from_pretrained(base_model, "Lei-bw/text-to-sql-fm")
|
| 43 |
+
|
| 44 |
+
# Load the tokenizer
|
| 45 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
|
| 46 |
+
|
| 47 |
+
# Example usage
|
| 48 |
+
text = "What is the average salary of employees in the sales department?"
|
| 49 |
+
inputs = tokenizer(text, return_tensors="pt")
|
| 50 |
+
outputs = model.generate(**inputs)
|
| 51 |
+
generated_text = tokenizer.decode(outputs[0])
|
| 52 |
+
|
| 53 |
+
print(generated_text)
|
| 54 |
```
|
| 55 |
|
| 56 |
## Training Details
|