--- language: - zh license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer datasets: - LeoKuo49/Amitabha_all_0823 model-index: - name: whisper-finetune_whithout-823 results: [] --- # whisper-finetune_whithout-823 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Amitabha_all_0823 dataset. It achieves the following results on the evaluation set: - Loss: 0.0002 - Cer: 0.1393 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.0556 | 3.1056 | 1000 | 0.0520 | 5.3837 | | 0.0067 | 6.2112 | 2000 | 0.0066 | 0.6326 | | 0.0004 | 9.3168 | 3000 | 0.0004 | 0.1895 | | 0.0001 | 12.4224 | 4000 | 0.0002 | 0.1393 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1