File size: 2,799 Bytes
3629823 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/nllb-200-distilled-600M
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: nllb_complete
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nllb_complete
This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8285
- Bleu: 17.1412
- Gen Len: 17.896
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5000
- num_epochs: 24.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-------:|:------:|:---------------:|:-------:|:-------:|
| 2.1296 | 1.4834 | 10000 | 2.0709 | 9.9056 | 20.1323 |
| 2.0253 | 2.9668 | 20000 | 1.9697 | 11.7423 | 19.27 |
| 1.8771 | 4.4503 | 30000 | 1.9199 | 13.3983 | 18.9643 |
| 1.7891 | 5.9338 | 40000 | 1.8851 | 14.1016 | 18.3833 |
| 1.7159 | 7.4173 | 50000 | 1.8680 | 14.8584 | 18.2797 |
| 1.6594 | 8.9007 | 60000 | 1.8473 | 15.8809 | 18.3863 |
| 1.6609 | 10.3842 | 70000 | 1.8406 | 15.8588 | 18.159 |
| 1.6358 | 11.8676 | 80000 | 1.8319 | 16.4395 | 18.4773 |
| 1.5623 | 13.3511 | 90000 | 1.8298 | 16.8956 | 18.3217 |
| 1.5534 | 14.8345 | 100000 | 1.8218 | 16.8725 | 18.5327 |
| 1.498 | 16.3180 | 110000 | 1.8286 | 16.6418 | 17.9697 |
| 1.4663 | 17.8014 | 120000 | 1.8252 | 17.2847 | 17.9357 |
| 1.4309 | 19.2849 | 130000 | 1.8299 | 17.027 | 17.7263 |
| 1.4398 | 20.7684 | 140000 | 1.8270 | 17.0189 | 18.1353 |
| 1.4534 | 22.2519 | 150000 | 1.8292 | 17.04 | 17.9637 |
| 1.4441 | 23.7353 | 160000 | 1.8285 | 17.1412 | 17.896 |
### Framework versions
- Transformers 4.50.3
- Pytorch 2.7.0+cu126
- Datasets 3.5.0
- Tokenizers 0.21.1
|