--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/nllb-200-distilled-600M tags: - generated_from_trainer metrics: - bleu model-index: - name: nllb_complete results: [] --- # nllb_complete This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8285 - Bleu: 17.1412 - Gen Len: 17.896 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5000 - num_epochs: 24.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-------:|:------:|:---------------:|:-------:|:-------:| | 2.1296 | 1.4834 | 10000 | 2.0709 | 9.9056 | 20.1323 | | 2.0253 | 2.9668 | 20000 | 1.9697 | 11.7423 | 19.27 | | 1.8771 | 4.4503 | 30000 | 1.9199 | 13.3983 | 18.9643 | | 1.7891 | 5.9338 | 40000 | 1.8851 | 14.1016 | 18.3833 | | 1.7159 | 7.4173 | 50000 | 1.8680 | 14.8584 | 18.2797 | | 1.6594 | 8.9007 | 60000 | 1.8473 | 15.8809 | 18.3863 | | 1.6609 | 10.3842 | 70000 | 1.8406 | 15.8588 | 18.159 | | 1.6358 | 11.8676 | 80000 | 1.8319 | 16.4395 | 18.4773 | | 1.5623 | 13.3511 | 90000 | 1.8298 | 16.8956 | 18.3217 | | 1.5534 | 14.8345 | 100000 | 1.8218 | 16.8725 | 18.5327 | | 1.498 | 16.3180 | 110000 | 1.8286 | 16.6418 | 17.9697 | | 1.4663 | 17.8014 | 120000 | 1.8252 | 17.2847 | 17.9357 | | 1.4309 | 19.2849 | 130000 | 1.8299 | 17.027 | 17.7263 | | 1.4398 | 20.7684 | 140000 | 1.8270 | 17.0189 | 18.1353 | | 1.4534 | 22.2519 | 150000 | 1.8292 | 17.04 | 17.9637 | | 1.4441 | 23.7353 | 160000 | 1.8285 | 17.1412 | 17.896 | ### Framework versions - Transformers 4.50.3 - Pytorch 2.7.0+cu126 - Datasets 3.5.0 - Tokenizers 0.21.1