--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - Leonel-Maia/fongbe-splitted metrics: - wer model-index: - name: whisper-small-splitted results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Leonel-Maia/fongbe-splitted type: Leonel-Maia/fongbe-splitted metrics: - name: Wer type: wer value: 0.11257288805358778 --- # whisper-small-splitted This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Leonel-Maia/fongbe-splitted dataset. It achieves the following results on the evaluation set: - Loss: 0.1084 - Wer: 0.1126 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 60.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.1324 | 2.1094 | 500 | 0.1909 | 0.3307 | | 0.0383 | 4.2187 | 1000 | 0.1153 | 0.1131 | | 0.0184 | 6.3281 | 1500 | 0.1084 | 0.1126 | | 0.0098 | 8.4374 | 2000 | 0.1122 | 0.1014 | | 0.0076 | 10.5468 | 2500 | 0.1101 | 0.0966 | | 0.0075 | 12.6562 | 3000 | 0.1156 | 0.0992 | ### Framework versions - Transformers 4.50.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1