File size: 2,292 Bytes
ac25f89 01e83a8 ac25f89 01e83a8 ac25f89 01e83a8 ac25f89 01e83a8 ac25f89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
library_name: transformers
license: apache-2.0
base_model: Leonel-Maia/fongbe-whisper-small
tags:
- generated_from_trainer
datasets:
- Leonel-Maia/ewe_dataset
metrics:
- wer
model-index:
- name: whisper-small-tf
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Leonel-Maia/ewe_dataset
type: Leonel-Maia/ewe_dataset
metrics:
- name: Wer
type: wer
value: 0.3810818307905687
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-small-tf
This model is a fine-tuned version of [Leonel-Maia/fongbe-whisper-small](https://huggingface.co/Leonel-Maia/fongbe-whisper-small) on the Leonel-Maia/ewe_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4403
- Wer: 0.3811
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 60.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:------:|
| 0.4849 | 1.7564 | 500 | 0.4948 | 0.4388 |
| 0.3147 | 3.5101 | 1000 | 0.4403 | 0.3811 |
| 0.1881 | 5.2639 | 1500 | 0.4694 | 0.3843 |
| 0.124 | 7.0176 | 2000 | 0.5287 | 0.3952 |
| 0.05 | 8.7740 | 2500 | 0.6124 | 0.4024 |
| 0.0166 | 10.5277 | 3000 | 0.6773 | 0.3989 |
| 0.0083 | 12.2814 | 3500 | 0.7468 | 0.4017 |
### Framework versions
- Transformers 4.50.3
- Pytorch 2.7.0+cu126
- Datasets 3.5.0
- Tokenizers 0.21.1
|