File size: 2,292 Bytes
ac25f89
 
 
 
 
 
01e83a8
 
ac25f89
 
 
 
01e83a8
 
 
 
 
 
 
 
 
 
 
ac25f89
 
 
 
 
 
 
01e83a8
ac25f89
01e83a8
 
ac25f89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
library_name: transformers
license: apache-2.0
base_model: Leonel-Maia/fongbe-whisper-small
tags:
- generated_from_trainer
datasets:
- Leonel-Maia/ewe_dataset
metrics:
- wer
model-index:
- name: whisper-small-tf
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Leonel-Maia/ewe_dataset
      type: Leonel-Maia/ewe_dataset
    metrics:
    - name: Wer
      type: wer
      value: 0.3810818307905687
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-small-tf

This model is a fine-tuned version of [Leonel-Maia/fongbe-whisper-small](https://huggingface.co/Leonel-Maia/fongbe-whisper-small) on the Leonel-Maia/ewe_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4403
- Wer: 0.3811

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 60.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer    |
|:-------------:|:-------:|:----:|:---------------:|:------:|
| 0.4849        | 1.7564  | 500  | 0.4948          | 0.4388 |
| 0.3147        | 3.5101  | 1000 | 0.4403          | 0.3811 |
| 0.1881        | 5.2639  | 1500 | 0.4694          | 0.3843 |
| 0.124         | 7.0176  | 2000 | 0.5287          | 0.3952 |
| 0.05          | 8.7740  | 2500 | 0.6124          | 0.4024 |
| 0.0166        | 10.5277 | 3000 | 0.6773          | 0.3989 |
| 0.0083        | 12.2814 | 3500 | 0.7468          | 0.4017 |


### Framework versions

- Transformers 4.50.3
- Pytorch 2.7.0+cu126
- Datasets 3.5.0
- Tokenizers 0.21.1