|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ Mistral model configuration""" | 
					
						
						|  |  | 
					
						
						|  | from ...configuration_utils import PretrainedConfig | 
					
						
						|  | from ...utils import logging | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = { | 
					
						
						|  | "mistralai/Mistral-7B-v0.1": "https://huggingface.co/mistralai/Mistral-7B-v0.1/resolve/main/config.json", | 
					
						
						|  | "mistralai/Mistral-7B-Instruct-v0.1": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/resolve/main/config.json", | 
					
						
						|  | "LeroyDyer/Mixtral_AI_CyberBrain_3.0": "https://huggingface.co/LeroyDyer/Mixtral_AI_CyberBrain_3.0/resolve/main/config.json", | 
					
						
						|  |  | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MistralConfig(PretrainedConfig): | 
					
						
						|  | r""" | 
					
						
						|  | This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an | 
					
						
						|  | Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration | 
					
						
						|  | with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1. | 
					
						
						|  |  | 
					
						
						|  | [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 
					
						
						|  | [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) | 
					
						
						|  |  | 
					
						
						|  | Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | 
					
						
						|  | documentation from [`PretrainedConfig`] for more information. | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | vocab_size (`int`, *optional*, defaults to 32000): | 
					
						
						|  | Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the | 
					
						
						|  | `inputs_ids` passed when calling [`MistralModel`] | 
					
						
						|  | hidden_size (`int`, *optional*, defaults to 4096): | 
					
						
						|  | Dimension of the hidden representations. | 
					
						
						|  | intermediate_size (`int`, *optional*, defaults to 14336): | 
					
						
						|  | Dimension of the MLP representations. | 
					
						
						|  | num_hidden_layers (`int`, *optional*, defaults to 32): | 
					
						
						|  | Number of hidden layers in the Transformer encoder. | 
					
						
						|  | num_attention_heads (`int`, *optional*, defaults to 32): | 
					
						
						|  | Number of attention heads for each attention layer in the Transformer encoder. | 
					
						
						|  | num_key_value_heads (`int`, *optional*, defaults to 8): | 
					
						
						|  | This is the number of key_value heads that should be used to implement Grouped Query Attention. If | 
					
						
						|  | `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | 
					
						
						|  | `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When | 
					
						
						|  | converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | 
					
						
						|  | by meanpooling all the original heads within that group. For more details checkout [this | 
					
						
						|  | paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. | 
					
						
						|  | hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | 
					
						
						|  | The non-linear activation function (function or string) in the decoder. | 
					
						
						|  | max_position_embeddings (`int`, *optional*, defaults to `4096*32`): | 
					
						
						|  | The maximum sequence length that this model might ever be used with. Mistral's sliding window attention | 
					
						
						|  | allows sequence of up to 4096*32 tokens. | 
					
						
						|  | initializer_range (`float`, *optional*, defaults to 0.02): | 
					
						
						|  | The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | 
					
						
						|  | rms_norm_eps (`float`, *optional*, defaults to 1e-06): | 
					
						
						|  | The epsilon used by the rms normalization layers. | 
					
						
						|  | use_cache (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not the model should return the last key/values attentions (not used by all models). Only | 
					
						
						|  | relevant if `config.is_decoder=True`. | 
					
						
						|  | pad_token_id (`int`, *optional*): | 
					
						
						|  | The id of the padding token. | 
					
						
						|  | bos_token_id (`int`, *optional*, defaults to 1): | 
					
						
						|  | The id of the "beginning-of-sequence" token. | 
					
						
						|  | eos_token_id (`int`, *optional*, defaults to 2): | 
					
						
						|  | The id of the "end-of-sequence" token. | 
					
						
						|  | tie_word_embeddings (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether the model's input and output word embeddings should be tied. | 
					
						
						|  | rope_theta (`float`, *optional*, defaults to 10000.0): | 
					
						
						|  | The base period of the RoPE embeddings. | 
					
						
						|  | sliding_window (`int`, *optional*, defaults to 4096): | 
					
						
						|  | Sliding window attention window size. If not specified, will default to `4096`. | 
					
						
						|  | attention_dropout (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | The dropout ratio for the attention probabilities. | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | >>> from transformers import MistralModel, MistralConfig | 
					
						
						|  |  | 
					
						
						|  | >>> # Initializing a Mistral 7B style configuration | 
					
						
						|  | >>> configuration = MistralConfig() | 
					
						
						|  |  | 
					
						
						|  | >>> # Initializing a model from the Mistral 7B style configuration | 
					
						
						|  | >>> model = MistralModel(configuration) | 
					
						
						|  |  | 
					
						
						|  | >>> # Accessing the model configuration | 
					
						
						|  | >>> configuration = model.config | 
					
						
						|  | ```""" | 
					
						
						|  |  | 
					
						
						|  | model_type = "mistral" | 
					
						
						|  | keys_to_ignore_at_inference = ["past_key_values"] | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vocab_size=32000, | 
					
						
						|  | hidden_size=4096, | 
					
						
						|  | intermediate_size=14336, | 
					
						
						|  | num_hidden_layers=32, | 
					
						
						|  | num_attention_heads=32, | 
					
						
						|  | num_key_value_heads=8, | 
					
						
						|  | hidden_act="silu", | 
					
						
						|  | max_position_embeddings=4096 * 32, | 
					
						
						|  | initializer_range=0.02, | 
					
						
						|  | rms_norm_eps=1e-6, | 
					
						
						|  | use_cache=True, | 
					
						
						|  | pad_token_id=None, | 
					
						
						|  | bos_token_id=1, | 
					
						
						|  | eos_token_id=2, | 
					
						
						|  | tie_word_embeddings=False, | 
					
						
						|  | rope_theta=10000.0, | 
					
						
						|  | sliding_window=4096, | 
					
						
						|  | attention_dropout=0.0, | 
					
						
						|  | max_thoughts=16, | 
					
						
						|  | merged_talk_heads=True, | 
					
						
						|  | merged_lm_and_talk_heads=False, | 
					
						
						|  | merged_lm_and_think_heads=True, | 
					
						
						|  | use_concat_talk_head=True, | 
					
						
						|  | use_shallow_think=True, | 
					
						
						|  | use_shallow_talk=False, | 
					
						
						|  | use_complex_think_head=False, | 
					
						
						|  | use_complex_talk_head=True, | 
					
						
						|  | use_weighted_talk_head=True, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | self.vocab_size = vocab_size | 
					
						
						|  | self.max_position_embeddings = max_position_embeddings | 
					
						
						|  | self.hidden_size = hidden_size | 
					
						
						|  | self.intermediate_size = intermediate_size | 
					
						
						|  | self.num_hidden_layers = num_hidden_layers | 
					
						
						|  | self.num_attention_heads = num_attention_heads | 
					
						
						|  | self.sliding_window = sliding_window | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if num_key_value_heads is None: | 
					
						
						|  | num_key_value_heads = num_attention_heads | 
					
						
						|  |  | 
					
						
						|  | self.num_key_value_heads = num_key_value_heads | 
					
						
						|  | self.hidden_act = hidden_act | 
					
						
						|  | self.initializer_range = initializer_range | 
					
						
						|  | self.rms_norm_eps = rms_norm_eps | 
					
						
						|  | self.use_cache = use_cache | 
					
						
						|  | self.rope_theta = rope_theta | 
					
						
						|  | self.attention_dropout = attention_dropout | 
					
						
						|  | self.max_thoughts = max_thoughts | 
					
						
						|  | self.merged_talk_heads = merged_talk_heads | 
					
						
						|  | self.merged_lm_and_talk_heads = merged_lm_and_talk_heads | 
					
						
						|  | self.merged_lm_and_think_heads = merged_lm_and_think_heads | 
					
						
						|  | self.use_concat_talk_head = use_concat_talk_head | 
					
						
						|  | self.use_shallow_think = use_shallow_think | 
					
						
						|  | self.use_shallow_talk = use_shallow_talk | 
					
						
						|  | self.use_complex_think_head = use_complex_think_head | 
					
						
						|  | self.use_complex_talk_head = use_complex_talk_head | 
					
						
						|  | self.use_weighted_talk_head = use_weighted_talk_head | 
					
						
						|  |  | 
					
						
						|  | super().__init__( | 
					
						
						|  | pad_token_id=pad_token_id, | 
					
						
						|  | bos_token_id=bos_token_id, | 
					
						
						|  | eos_token_id=eos_token_id, | 
					
						
						|  | tie_word_embeddings=tie_word_embeddings, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  |