|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ PyTorch Quiet model.""" | 
					
						
						|  | import inspect | 
					
						
						|  | import math | 
					
						
						|  | import copy | 
					
						
						|  | import os | 
					
						
						|  | import time | 
					
						
						|  | import pandas as pd | 
					
						
						|  | import seaborn as sns | 
					
						
						|  | import matplotlib.pyplot as plt | 
					
						
						|  | import wandb | 
					
						
						|  | from termcolor import colored | 
					
						
						|  | from tqdm import tqdm | 
					
						
						|  | import random | 
					
						
						|  | import numpy as np | 
					
						
						|  | from matplotlib.colors import LinearSegmentedColormap, LogNorm | 
					
						
						|  | import warnings | 
					
						
						|  | from collections import defaultdict | 
					
						
						|  | from typing import List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | import torch.utils.checkpoint | 
					
						
						|  | from torch import nn | 
					
						
						|  | from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | 
					
						
						|  | from transformers.generation.utils import GenerationMixin | 
					
						
						|  | from transformers.generation.stopping_criteria import StoppingCriteriaList, validate_stopping_criteria | 
					
						
						|  | from transformers import TextStreamer | 
					
						
						|  |  | 
					
						
						|  | from transformers.activations import ACT2FN | 
					
						
						|  | from transformers.cache_utils import Cache, DynamicCache | 
					
						
						|  | from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask | 
					
						
						|  | from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast | 
					
						
						|  | from transformers.modeling_utils import PreTrainedModel | 
					
						
						|  | from transformers.utils import ( | 
					
						
						|  | add_start_docstrings, | 
					
						
						|  | add_start_docstrings_to_model_forward, | 
					
						
						|  | is_flash_attn_2_available, | 
					
						
						|  | is_flash_attn_greater_or_equal_2_10, | 
					
						
						|  | logging, | 
					
						
						|  | replace_return_docstrings, | 
					
						
						|  | ) | 
					
						
						|  | from .configuration_quiet import QuietConfig | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_flash_attn_2_available(): | 
					
						
						|  | from flash_attn import flash_attn_func, flash_attn_varlen_func | 
					
						
						|  | from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input | 
					
						
						|  |  | 
					
						
						|  | _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | _CONFIG_FOR_DOC = "QuietConfig" | 
					
						
						|  |  | 
					
						
						|  | from reportlab.pdfgen import canvas | 
					
						
						|  | from reportlab.lib.pagesizes import letter | 
					
						
						|  | from reportlab.lib.colors import HexColor | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _prepare_4d_causal_attention_mask_for_sdpa(attention_mask, input_shape, inputs_embeds, past_key_values_length): | 
					
						
						|  |  | 
					
						
						|  | bsz, tgt_len = input_shape | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | combined_attention_mask = None | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attention_mask.dim() == 4: | 
					
						
						|  | combined_attention_mask = attention_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | elif attention_mask.dim() == 3: | 
					
						
						|  | expanded_attn_mask = attention_mask[:, None, :, :] | 
					
						
						|  | combined_attention_mask = expanded_attn_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | elif attention_mask.dim() == 2: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if past_key_values_length > 0: | 
					
						
						|  | attention_mask = attention_mask.to(dtype=torch.long) | 
					
						
						|  | attention_mask = attention_mask[:, past_key_values_length:] | 
					
						
						|  | expanded_attn_mask = attention_mask[:, None, None, :] | 
					
						
						|  | combined_attention_mask = expanded_attn_mask | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( | 
					
						
						|  | input_shape, attention_mask.shape | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if combined_attention_mask is not None: | 
					
						
						|  |  | 
					
						
						|  | combined_attention_mask = combined_attention_mask.clamp(min=0, max=1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | combined_attention_mask = combined_attention_mask.to(torch.bfloat16) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | combined_attention_mask = (1.0 - combined_attention_mask) * -10000.0 | 
					
						
						|  | else: | 
					
						
						|  | combined_attention_mask = torch.zeros( | 
					
						
						|  | (bsz, 1, tgt_len, tgt_len), dtype=torch.bfloat16, device=inputs_embeds.device | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return combined_attention_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _get_unpad_data(attention_mask): | 
					
						
						|  | seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | 
					
						
						|  | indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | 
					
						
						|  | max_seqlen_in_batch = seqlens_in_batch.max().item() | 
					
						
						|  | cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) | 
					
						
						|  | return ( | 
					
						
						|  | indices, | 
					
						
						|  | cu_seqlens, | 
					
						
						|  | max_seqlen_in_batch, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class QuietRMSNorm(nn.Module): | 
					
						
						|  | def __init__(self, hidden_size, eps=1e-6): | 
					
						
						|  | """ | 
					
						
						|  | QuietRMSNorm is equivalent to T5LayerNorm | 
					
						
						|  | """ | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.weight = nn.Parameter(torch.ones(hidden_size)) | 
					
						
						|  | self.variance_epsilon = eps | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | input_dtype = hidden_states.dtype | 
					
						
						|  | hidden_states = hidden_states.to(torch.float32) | 
					
						
						|  | variance = hidden_states.pow(2).mean(-1, keepdim=True) | 
					
						
						|  | hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | 
					
						
						|  | return hidden_states.to(input_dtype) * self.weight.to(hidden_states.device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class QuietRotaryEmbedding(nn.Module): | 
					
						
						|  | def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.dim = dim | 
					
						
						|  | self.max_position_embeddings = max_position_embeddings | 
					
						
						|  | self.base = base | 
					
						
						|  | inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) | 
					
						
						|  | self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self._set_cos_sin_cache( | 
					
						
						|  | seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _set_cos_sin_cache(self, seq_len, device, dtype): | 
					
						
						|  | self.max_seq_len_cached = seq_len | 
					
						
						|  | t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | 
					
						
						|  |  | 
					
						
						|  | freqs = torch.outer(t, self.inv_freq) | 
					
						
						|  |  | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  | self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | 
					
						
						|  | self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, seq_len=None): | 
					
						
						|  |  | 
					
						
						|  | if seq_len > self.max_seq_len_cached: | 
					
						
						|  | self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) | 
					
						
						|  |  | 
					
						
						|  | return ( | 
					
						
						|  | self.cos_cached[:seq_len].to(dtype=x.dtype), | 
					
						
						|  | self.sin_cached[:seq_len].to(dtype=x.dtype), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def rotate_half(x): | 
					
						
						|  | """Rotates half the hidden dims of the input.""" | 
					
						
						|  | x1 = x[..., : x.shape[-1] // 2] | 
					
						
						|  | x2 = x[..., x.shape[-1] // 2 :] | 
					
						
						|  | return torch.cat((-x2, x1), dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): | 
					
						
						|  | """Applies Rotary Position Embedding to the query and key tensors. | 
					
						
						|  | Args: | 
					
						
						|  | q (`torch.Tensor`): The query tensor. | 
					
						
						|  | k (`torch.Tensor`): The key tensor. | 
					
						
						|  | cos (`torch.Tensor`): The cosine part of the rotary embedding. | 
					
						
						|  | sin (`torch.Tensor`): The sine part of the rotary embedding. | 
					
						
						|  | position_ids (`torch.Tensor`): | 
					
						
						|  | The position indices of the tokens corresponding to the query and key tensors. For example, this can be | 
					
						
						|  | used to pass offsetted position ids when working with a KV-cache. | 
					
						
						|  | unsqueeze_dim (`int`, *optional*, defaults to 1): | 
					
						
						|  | The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | 
					
						
						|  | sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | 
					
						
						|  | that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | 
					
						
						|  | k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | 
					
						
						|  | cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | 
					
						
						|  | the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | 
					
						
						|  | Returns: | 
					
						
						|  | `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | 
					
						
						|  | """ | 
					
						
						|  | cos = cos[position_ids].unsqueeze(unsqueeze_dim) | 
					
						
						|  | sin = sin[position_ids].unsqueeze(unsqueeze_dim) | 
					
						
						|  | q_embed = (q * cos) + (rotate_half(q) * sin) | 
					
						
						|  | k_embed = (k * cos) + (rotate_half(k) * sin) | 
					
						
						|  | return q_embed, k_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class QuietMLP(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.intermediate_size = config.intermediate_size | 
					
						
						|  | self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | 
					
						
						|  | self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | 
					
						
						|  | self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) | 
					
						
						|  | self.act_fn = ACT2FN[config.hidden_act] | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | 
					
						
						|  | num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | 
					
						
						|  | """ | 
					
						
						|  | batch, num_key_value_heads, slen, head_dim = hidden_states.shape | 
					
						
						|  | if n_rep == 1: | 
					
						
						|  | return hidden_states | 
					
						
						|  | hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | 
					
						
						|  | return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class QuietAttention(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer | 
					
						
						|  | and "Generating Long Sequences with Sparse Transformers". | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: QuietConfig, layer_idx: Optional[int] = None): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.layer_idx = layer_idx | 
					
						
						|  | if layer_idx is None: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " | 
					
						
						|  | "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " | 
					
						
						|  | "when creating this class." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.num_heads = config.num_attention_heads | 
					
						
						|  | self.head_dim = self.hidden_size // self.num_heads | 
					
						
						|  | self.num_key_value_heads = config.num_key_value_heads | 
					
						
						|  | self.num_key_value_groups = self.num_heads // self.num_key_value_heads | 
					
						
						|  | self.max_position_embeddings = config.max_position_embeddings | 
					
						
						|  | self.rope_theta = config.rope_theta | 
					
						
						|  | self.is_causal = True | 
					
						
						|  | self.attention_dropout = config.attention_dropout | 
					
						
						|  | self._attn_implementation = config._attn_implementation | 
					
						
						|  |  | 
					
						
						|  | if (self.head_dim * self.num_heads) != self.hidden_size: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | 
					
						
						|  | f" and `num_heads`: {self.num_heads})." | 
					
						
						|  | ) | 
					
						
						|  | self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) | 
					
						
						|  | self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) | 
					
						
						|  | self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) | 
					
						
						|  | self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) | 
					
						
						|  |  | 
					
						
						|  | self.rotary_emb = QuietRotaryEmbedding( | 
					
						
						|  | self.head_dim, | 
					
						
						|  | max_position_embeddings=self.max_position_embeddings, | 
					
						
						|  | base=self.rope_theta, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | 
					
						
						|  | return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  | if "padding_mask" in kwargs: | 
					
						
						|  | warnings.warn( | 
					
						
						|  | "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" | 
					
						
						|  | ) | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | query_states = self.q_proj(hidden_states) | 
					
						
						|  | key_states = self.k_proj(hidden_states) | 
					
						
						|  | value_states = self.v_proj(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | kv_seq_len = key_states.shape[-2] | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | if self.layer_idx is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | 
					
						
						|  | "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | 
					
						
						|  | "with a layer index." | 
					
						
						|  | ) | 
					
						
						|  | kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | 
					
						
						|  | cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | cache_kwargs = {"sin": sin, "cos": cos} | 
					
						
						|  | key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
						
						|  | value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
						
						|  |  | 
					
						
						|  | attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | 
					
						
						|  |  | 
					
						
						|  | if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" | 
					
						
						|  | f" {attn_weights.size()}" | 
					
						
						|  | ) | 
					
						
						|  | if self._attn_implementation == "flash_attention_2": | 
					
						
						|  |  | 
					
						
						|  | attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None | 
					
						
						|  | elif self._attn_implementation == "sdpa": | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is None or attention_mask.dim() == 2: | 
					
						
						|  | attention_mask = _prepare_4d_causal_attention_mask( | 
					
						
						|  | attention_mask, | 
					
						
						|  | (batch_size, seq_length), | 
					
						
						|  | inputs_embeds, | 
					
						
						|  | past_key_values_length, | 
					
						
						|  | sliding_window=self.config.sliding_window, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is None or attention_mask.dim() == 2: | 
					
						
						|  | attention_mask = _prepare_4d_causal_attention_mask( | 
					
						
						|  | attention_mask, | 
					
						
						|  | (batch_size, seq_length), | 
					
						
						|  | inputs_embeds, | 
					
						
						|  | past_key_values_length, | 
					
						
						|  | sliding_window=self.config.sliding_window, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_weights = attn_weights + attention_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | 
					
						
						|  | attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) | 
					
						
						|  | attn_output = torch.matmul(attn_weights, value_states) | 
					
						
						|  |  | 
					
						
						|  | if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | 
					
						
						|  | f" {attn_output.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.transpose(1, 2).contiguous() | 
					
						
						|  | attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.o_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | if not output_attentions: | 
					
						
						|  | attn_weights = None | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class QuietFlashAttention2(QuietAttention): | 
					
						
						|  | """ | 
					
						
						|  | Quiet flash attention module. This module inherits from `QuietAttention` as the weights of the module stays | 
					
						
						|  | untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | 
					
						
						|  | flash attention and deal with padding tokens in case the input contains any of them. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, *args, **kwargs): | 
					
						
						|  | super().__init__(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | if "padding_mask" in kwargs: | 
					
						
						|  | warnings.warn( | 
					
						
						|  | "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_mask = kwargs.pop("padding_mask") | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | query_states = self.q_proj(hidden_states) | 
					
						
						|  | key_states = self.k_proj(hidden_states) | 
					
						
						|  | value_states = self.v_proj(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | kv_seq_len = key_states.shape[-2] | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | if self.layer_idx is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | 
					
						
						|  | "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | 
					
						
						|  | "with a layer index." | 
					
						
						|  | ) | 
					
						
						|  | kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1 | 
					
						
						|  | cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len) | 
					
						
						|  |  | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | 
					
						
						|  |  | 
					
						
						|  | use_sliding_windows = ( | 
					
						
						|  | _flash_supports_window_size | 
					
						
						|  | and getattr(self.config, "sliding_window", None) is not None | 
					
						
						|  | and kv_seq_len > self.config.sliding_window | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if not _flash_supports_window_size: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "The current flash attention version does not support sliding window attention, for a more memory efficient implementation" | 
					
						
						|  | " make sure to upgrade flash-attn library." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  |  | 
					
						
						|  | cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0 | 
					
						
						|  | if ( | 
					
						
						|  | getattr(self.config, "sliding_window", None) is not None | 
					
						
						|  | and kv_seq_len > self.config.sliding_window | 
					
						
						|  | and cache_has_contents | 
					
						
						|  | ): | 
					
						
						|  | slicing_tokens = 1 - self.config.sliding_window | 
					
						
						|  |  | 
					
						
						|  | past_key = past_key_value[self.layer_idx][0] | 
					
						
						|  | past_value = past_key_value[self.layer_idx][1] | 
					
						
						|  |  | 
					
						
						|  | past_key = past_key[:, :, slicing_tokens:, :].contiguous() | 
					
						
						|  | past_value = past_value[:, :, slicing_tokens:, :].contiguous() | 
					
						
						|  |  | 
					
						
						|  | if past_key.shape[-2] != self.config.sliding_window - 1: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" | 
					
						
						|  | f" {past_key.shape}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | attention_mask = attention_mask[:, slicing_tokens:] | 
					
						
						|  | attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) | 
					
						
						|  |  | 
					
						
						|  | cache_kwargs = {"sin": sin, "cos": cos} | 
					
						
						|  | key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
						
						|  | value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
						
						|  | dropout_rate = 0.0 if not self.training else self.attention_dropout | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | input_dtype = query_states.dtype | 
					
						
						|  | if input_dtype == torch.float32: | 
					
						
						|  | if torch.is_autocast_enabled(): | 
					
						
						|  | target_dtype = torch.get_autocast_gpu_dtype() | 
					
						
						|  |  | 
					
						
						|  | elif hasattr(self.config, "_pre_quantization_dtype"): | 
					
						
						|  | target_dtype = self.config._pre_quantization_dtype | 
					
						
						|  | else: | 
					
						
						|  | target_dtype = self.q_proj.weight.dtype | 
					
						
						|  |  | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | f"The input hidden states seems to be silently casted in float32, this might be related to" | 
					
						
						|  | f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | 
					
						
						|  | f" {target_dtype}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.to(target_dtype) | 
					
						
						|  | key_states = key_states.to(target_dtype) | 
					
						
						|  | value_states = value_states.to(target_dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.transpose(1, 2) | 
					
						
						|  | key_states = key_states.transpose(1, 2) | 
					
						
						|  | value_states = value_states.transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self._flash_attention_forward( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | q_len, | 
					
						
						|  | dropout=dropout_rate, | 
					
						
						|  | use_sliding_windows=use_sliding_windows, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() | 
					
						
						|  | attn_output = self.o_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | if not output_attentions: | 
					
						
						|  | attn_weights = None | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights, past_key_value | 
					
						
						|  |  | 
					
						
						|  | def _flash_attention_forward( | 
					
						
						|  | self, | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | query_length, | 
					
						
						|  | dropout=0.0, | 
					
						
						|  | softmax_scale=None, | 
					
						
						|  | use_sliding_windows=False, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | 
					
						
						|  | first unpad the input, then computes the attention scores and pad the final attention scores. | 
					
						
						|  | Args: | 
					
						
						|  | query_states (`torch.Tensor`): | 
					
						
						|  | Input query states to be passed to Flash Attention API | 
					
						
						|  | key_states (`torch.Tensor`): | 
					
						
						|  | Input key states to be passed to Flash Attention API | 
					
						
						|  | value_states (`torch.Tensor`): | 
					
						
						|  | Input value states to be passed to Flash Attention API | 
					
						
						|  | attention_mask (`torch.Tensor`): | 
					
						
						|  | The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | 
					
						
						|  | position of padding tokens and 1 for the position of non-padding tokens. | 
					
						
						|  | dropout (`int`, *optional*): | 
					
						
						|  | Attention dropout | 
					
						
						|  | softmax_scale (`float`, *optional*): | 
					
						
						|  | The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | 
					
						
						|  | use_sliding_windows (`bool`, *optional*): | 
					
						
						|  | Whether to activate sliding window attention. | 
					
						
						|  | """ | 
					
						
						|  | if not self._flash_attn_uses_top_left_mask: | 
					
						
						|  | causal = self.is_causal | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | causal = self.is_causal and query_length != 1 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | if attention_mask.dim() == 4: | 
					
						
						|  |  | 
					
						
						|  | attention_mask = attention_mask.squeeze(1).squeeze(1) | 
					
						
						|  | elif attention_mask.dim() != 2: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Invalid attention mask dimension: {attention_mask.dim()}. Expected 2D or 4D mask." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_mask = attention_mask.to(torch.bool).to(torch.int32) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | batch_size = query_states.shape[0] | 
					
						
						|  | query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( | 
					
						
						|  | query_states, key_states, value_states, attention_mask, query_length | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | cu_seqlens_q, cu_seqlens_k = cu_seq_lens | 
					
						
						|  | max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | 
					
						
						|  |  | 
					
						
						|  | if not use_sliding_windows: | 
					
						
						|  | attn_output_unpad = flash_attn_varlen_func( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | cu_seqlens_q=cu_seqlens_q, | 
					
						
						|  | cu_seqlens_k=cu_seqlens_k, | 
					
						
						|  | max_seqlen_q=max_seqlen_in_batch_q, | 
					
						
						|  | max_seqlen_k=max_seqlen_in_batch_k, | 
					
						
						|  | dropout_p=dropout, | 
					
						
						|  | softmax_scale=softmax_scale, | 
					
						
						|  | causal=causal, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | attn_output_unpad = flash_attn_varlen_func( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | cu_seqlens_q=cu_seqlens_q, | 
					
						
						|  | cu_seqlens_k=cu_seqlens_k, | 
					
						
						|  | max_seqlen_q=max_seqlen_in_batch_q, | 
					
						
						|  | max_seqlen_k=max_seqlen_in_batch_k, | 
					
						
						|  | dropout_p=dropout, | 
					
						
						|  | softmax_scale=softmax_scale, | 
					
						
						|  | causal=causal, | 
					
						
						|  | window_size=(self.config.sliding_window, self.config.sliding_window), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) | 
					
						
						|  | else: | 
					
						
						|  | if not use_sliding_windows: | 
					
						
						|  | attn_output = flash_attn_func( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | dropout, | 
					
						
						|  | softmax_scale=softmax_scale, | 
					
						
						|  | causal=causal, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | attn_output = flash_attn_func( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | dropout, | 
					
						
						|  | softmax_scale=softmax_scale, | 
					
						
						|  | causal=causal, | 
					
						
						|  | window_size=(self.config.sliding_window, self.config.sliding_window), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return attn_output | 
					
						
						|  |  | 
					
						
						|  | def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): | 
					
						
						|  | batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if kv_seq_len != attention_mask.shape[-1]: | 
					
						
						|  | attention_mask_num_tokens = attention_mask.shape[-1] | 
					
						
						|  | attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :] | 
					
						
						|  |  | 
					
						
						|  | indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | 
					
						
						|  |  | 
					
						
						|  | key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) | 
					
						
						|  | value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) | 
					
						
						|  |  | 
					
						
						|  | if query_length == kv_seq_len: | 
					
						
						|  | query_layer = index_first_axis( | 
					
						
						|  | query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k | 
					
						
						|  | ) | 
					
						
						|  | cu_seqlens_q = cu_seqlens_k | 
					
						
						|  | max_seqlen_in_batch_q = max_seqlen_in_batch_k | 
					
						
						|  | indices_q = indices_k | 
					
						
						|  | elif query_length == 1: | 
					
						
						|  | max_seqlen_in_batch_q = 1 | 
					
						
						|  | cu_seqlens_q = torch.arange( | 
					
						
						|  | batch_size + 1, dtype=torch.int32, device=query_layer.device | 
					
						
						|  | ) | 
					
						
						|  | indices_q = cu_seqlens_q[:-1] | 
					
						
						|  | query_layer = query_layer.squeeze(1) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | attention_mask = attention_mask[:, -query_length:] | 
					
						
						|  | query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) | 
					
						
						|  |  | 
					
						
						|  | return ( | 
					
						
						|  | query_layer, | 
					
						
						|  | key_layer, | 
					
						
						|  | value_layer, | 
					
						
						|  | indices_q, | 
					
						
						|  | (cu_seqlens_q, cu_seqlens_k), | 
					
						
						|  | (max_seqlen_in_batch_q, max_seqlen_in_batch_k), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class QuietSdpaAttention(QuietAttention): | 
					
						
						|  | """ | 
					
						
						|  | Quiet attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from | 
					
						
						|  | `QuietAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to | 
					
						
						|  | SDPA API. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  | if output_attentions: | 
					
						
						|  |  | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "QuietModel is using QuietSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " | 
					
						
						|  | 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | 
					
						
						|  | ) | 
					
						
						|  | return super().forward( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_value, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | query_states = self.q_proj(hidden_states) | 
					
						
						|  | key_states = self.k_proj(hidden_states) | 
					
						
						|  | value_states = self.v_proj(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | kv_seq_len = key_states.shape[-2] | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | 
					
						
						|  | cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | 
					
						
						|  |  | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | cache_kwargs = {"sin": sin, "cos": cos} | 
					
						
						|  | key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
						
						|  |  | 
					
						
						|  | key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
						
						|  | value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if query_states.device.type == "cuda" and attention_mask is not None: | 
					
						
						|  | query_states = query_states.contiguous() | 
					
						
						|  | key_states = key_states.contiguous() | 
					
						
						|  | value_states = value_states.contiguous() | 
					
						
						|  |  | 
					
						
						|  | attn_output = torch.nn.functional.scaled_dot_product_attention( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attn_mask=attention_mask.to(query_states.device) if attention_mask is not None else None, | 
					
						
						|  | dropout_p=self.attention_dropout if self.training else 0.0, | 
					
						
						|  |  | 
					
						
						|  | is_causal=self.is_causal and attention_mask is None and q_len > 1, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.transpose(1, 2).contiguous() | 
					
						
						|  | attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.o_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | return attn_output, None, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | QUIET_ATTENTION_CLASSES = { | 
					
						
						|  | "eager": QuietAttention, | 
					
						
						|  | "flash_attention_2": QuietFlashAttention2, | 
					
						
						|  | "sdpa": QuietSdpaAttention, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class QuietDecoderLayer(nn.Module): | 
					
						
						|  | def __init__(self, config: QuietConfig, layer_idx: int): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  |  | 
					
						
						|  | self.self_attn = QUIET_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) | 
					
						
						|  |  | 
					
						
						|  | self.mlp = QuietMLP(config) | 
					
						
						|  | self.input_layernorm = QuietRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  | self.post_attention_layernorm = QuietRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
						
						|  | output_attentions: Optional[bool] = False, | 
					
						
						|  | use_cache: Optional[bool] = False, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | 
					
						
						|  | if "padding_mask" in kwargs: | 
					
						
						|  | warnings.warn( | 
					
						
						|  | "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" | 
					
						
						|  | ) | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | 
					
						
						|  | attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | 
					
						
						|  | `(batch, sequence_length)` where padding elements are indicated by 0. | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
						
						|  | returned tensors for more detail. | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | 
					
						
						|  | (see `past_key_values`). | 
					
						
						|  | past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.input_layernorm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states, self_attn_weights, present_key_value = self.self_attn( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_value, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = residual.to(hidden_states.device) + hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states = self.post_attention_layernorm(hidden_states) | 
					
						
						|  | hidden_states = self.mlp(hidden_states) | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  |  | 
					
						
						|  | outputs = (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | outputs += (self_attn_weights,) | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | outputs += (present_key_value,) | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | QUIET_START_DOCSTRING = r""" | 
					
						
						|  | This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | 
					
						
						|  | library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | 
					
						
						|  | etc.) | 
					
						
						|  | This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | 
					
						
						|  | Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | 
					
						
						|  | and behavior. | 
					
						
						|  | Parameters: | 
					
						
						|  | config ([`QuietConfig`]): | 
					
						
						|  | Model configuration class with all the parameters of the model. Initializing with a config file does not | 
					
						
						|  | load the weights associated with the model, only the configuration. Check out the | 
					
						
						|  | [`~PreTrainedModel.from_pretrained`] method to load the model weights. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The bare Quiet Model outputting raw hidden-states without any specific head on top.", | 
					
						
						|  | QUIET_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class QuietPreTrainedModel(PreTrainedModel): | 
					
						
						|  | config_class = QuietConfig | 
					
						
						|  | base_model_prefix = "model" | 
					
						
						|  | supports_gradient_checkpointing = True | 
					
						
						|  | _no_split_modules = ["QuietDecoderLayer"] | 
					
						
						|  | _skip_keys_device_placement = "past_key_values" | 
					
						
						|  | _supports_flash_attn_2 = True | 
					
						
						|  | _supports_sdpa = True | 
					
						
						|  | _supports_cache_class = True | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, module): | 
					
						
						|  | std = self.config.initializer_range | 
					
						
						|  | if isinstance(module, nn.Linear): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=std) | 
					
						
						|  | if module.bias is not None: | 
					
						
						|  | module.bias.data.zero_() | 
					
						
						|  | elif isinstance(module, nn.Embedding): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=std) | 
					
						
						|  | if module.padding_idx is not None: | 
					
						
						|  | module.weight.data[module.padding_idx].zero_() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | QUIET_INPUTS_DOCSTRING = r""" | 
					
						
						|  | Args: | 
					
						
						|  | input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | 
					
						
						|  | Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | 
					
						
						|  | it. | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  | [What are input IDs?](../glossary#input-ids) | 
					
						
						|  | attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
						
						|  | - 1 for tokens that are **not masked**, | 
					
						
						|  | - 0 for tokens that are **masked**. | 
					
						
						|  | [What are attention masks?](../glossary#attention-mask) | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  | If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see | 
					
						
						|  | `past_key_values`). | 
					
						
						|  | If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | 
					
						
						|  | and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | 
					
						
						|  | information on the default strategy. | 
					
						
						|  | - 1 indicates the head is **not masked**, | 
					
						
						|  | - 0 indicates the head is **masked**. | 
					
						
						|  | position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | 
					
						
						|  | config.n_positions - 1]`. | 
					
						
						|  | [What are position IDs?](../glossary#position-ids) | 
					
						
						|  | past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): | 
					
						
						|  | Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | 
					
						
						|  | blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` | 
					
						
						|  | returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. | 
					
						
						|  | Two formats are allowed: | 
					
						
						|  | - a [`~cache_utils.Cache`] instance; | 
					
						
						|  | - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | 
					
						
						|  | shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy | 
					
						
						|  | cache format. | 
					
						
						|  | The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the | 
					
						
						|  | legacy cache format will be returned. | 
					
						
						|  | If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't | 
					
						
						|  | have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` | 
					
						
						|  | of shape `(batch_size, sequence_length)`. | 
					
						
						|  | inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | 
					
						
						|  | Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | 
					
						
						|  | is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | 
					
						
						|  | model's internal embedding lookup matrix. | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | 
					
						
						|  | `past_key_values`). | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | 
					
						
						|  | tensors for more detail. | 
					
						
						|  | output_hidden_states (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | 
					
						
						|  | more detail. | 
					
						
						|  | return_dict (`bool`, *optional*): | 
					
						
						|  | Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The bare Quiet Model outputting raw hidden-states without any specific head on top.", | 
					
						
						|  | QUIET_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class QuietModel(QuietPreTrainedModel): | 
					
						
						|  | """ | 
					
						
						|  | Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`QuietDecoderLayer`] | 
					
						
						|  | Args: | 
					
						
						|  | config: QuietConfig | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: QuietConfig): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.padding_idx = config.pad_token_id | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  |  | 
					
						
						|  | self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | 
					
						
						|  | self.layers = nn.ModuleList( | 
					
						
						|  | [QuietDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | 
					
						
						|  | ) | 
					
						
						|  | self._attn_implementation = config._attn_implementation | 
					
						
						|  | self.norm = QuietRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.embed_tokens | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.embed_tokens = value | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(QUIET_INPUTS_DOCSTRING) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, BaseModelOutputWithPast]: | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
						
						|  |  | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if input_ids is not None and inputs_embeds is not None: | 
					
						
						|  | raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") | 
					
						
						|  | elif input_ids is not None: | 
					
						
						|  | batch_size, seq_length = input_ids.shape | 
					
						
						|  | elif inputs_embeds is not None: | 
					
						
						|  | batch_size, seq_length, _ = inputs_embeds.shape | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | if use_cache: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | 
					
						
						|  | ) | 
					
						
						|  | use_cache = False | 
					
						
						|  |  | 
					
						
						|  | past_key_values_length = 0 | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | use_legacy_cache = not isinstance(past_key_values, Cache) | 
					
						
						|  | if use_legacy_cache: | 
					
						
						|  | past_key_values = DynamicCache.from_legacy_cache(past_key_values) | 
					
						
						|  | past_key_values_length = past_key_values.get_usable_length(seq_length) | 
					
						
						|  |  | 
					
						
						|  | if position_ids is None: | 
					
						
						|  | device = input_ids.device if input_ids is not None else inputs_embeds.device | 
					
						
						|  | position_ids = torch.arange( | 
					
						
						|  | past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device | 
					
						
						|  | ) | 
					
						
						|  | position_ids = position_ids.unsqueeze(0).view(-1, seq_length) | 
					
						
						|  | else: | 
					
						
						|  | position_ids = position_ids.view(-1, seq_length).long() | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  | inputs_embeds = self.embed_tokens(input_ids) | 
					
						
						|  |  | 
					
						
						|  | if self._attn_implementation == "flash_attention_2": | 
					
						
						|  |  | 
					
						
						|  | attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None | 
					
						
						|  | elif self._attn_implementation == "sdpa" and not output_attentions and attention_mask.dim() == 2 and False: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( | 
					
						
						|  | attention_mask, | 
					
						
						|  | (batch_size, seq_length), | 
					
						
						|  | inputs_embeds, | 
					
						
						|  | past_key_values_length, | 
					
						
						|  | ) | 
					
						
						|  | elif attention_mask is None or attention_mask.dim() == 2: | 
					
						
						|  |  | 
					
						
						|  | attention_mask = _prepare_4d_causal_attention_mask( | 
					
						
						|  | attention_mask, | 
					
						
						|  | (batch_size, seq_length), | 
					
						
						|  | inputs_embeds, | 
					
						
						|  | past_key_values_length, | 
					
						
						|  | sliding_window=self.config.sliding_window, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = inputs_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | all_hidden_states = () if output_hidden_states else None | 
					
						
						|  | all_self_attns = () if output_attentions else None | 
					
						
						|  | next_decoder_cache = None | 
					
						
						|  |  | 
					
						
						|  | for decoder_layer in self.layers: | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | layer_outputs = self._gradient_checkpointing_func( | 
					
						
						|  | decoder_layer.__call__, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | position_ids, | 
					
						
						|  | past_key_values, | 
					
						
						|  | output_attentions, | 
					
						
						|  | use_cache, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | layer_outputs = decoder_layer( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_values, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = layer_outputs[0] | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | next_decoder_cache = layer_outputs[2 if output_attentions else 1] | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | all_self_attns += (layer_outputs[1],) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.norm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | next_cache = None | 
					
						
						|  | if use_cache: | 
					
						
						|  | next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) | 
					
						
						|  | return BaseModelOutputWithPast( | 
					
						
						|  | last_hidden_state=hidden_states, | 
					
						
						|  | past_key_values=next_cache, | 
					
						
						|  | hidden_states=all_hidden_states, | 
					
						
						|  | attentions=all_self_attns, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def nonzero_mean(x, axis=None): | 
					
						
						|  | if axis is not None: | 
					
						
						|  | return x.sum(axis) / (x != 0).sum(axis) | 
					
						
						|  | return x.sum() / (x != 0).sum() | 
					
						
						|  |  | 
					
						
						|  | def loss_mean(x): | 
					
						
						|  | return x.sum() / (x != 0).sum() | 
					
						
						|  |  | 
					
						
						|  | class QuietForCausalLM(QuietPreTrainedModel, GenerationMixin): | 
					
						
						|  | _tied_weights_keys = ["lm_head.weight"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.model = QuietModel(config) | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  | self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.max_thoughts = config.max_thoughts | 
					
						
						|  | self.merged_lm_and_talk_heads = config.merged_lm_and_talk_heads | 
					
						
						|  | self.use_concat_talk_head = config.use_concat_talk_head | 
					
						
						|  | self.use_shallow_talk = config.use_shallow_talk | 
					
						
						|  | self.use_complex_talk_head = config.use_complex_talk_head | 
					
						
						|  | self.use_weighted_talk_head = config.use_weighted_talk_head | 
					
						
						|  |  | 
					
						
						|  | assert not (self.use_weighted_talk_head and self.use_shallow_talk) | 
					
						
						|  |  | 
					
						
						|  | self.n_ahead = 1 | 
					
						
						|  | self.n_ahead_talk = 1 | 
					
						
						|  | self.n_passes = 1 | 
					
						
						|  | self.n_tokens_print = 1 | 
					
						
						|  | self.gradient_accumulation_steps = 1 | 
					
						
						|  | self.training_steps = 0 | 
					
						
						|  | self.tokenizer = None | 
					
						
						|  | self.start_token_id = None | 
					
						
						|  | self.end_token_id = None | 
					
						
						|  | self.rm_initialized = False | 
					
						
						|  | self.residual_talk_head = True | 
					
						
						|  | self.thought_init_std_scale = 1e-2 | 
					
						
						|  |  | 
					
						
						|  | self.final_only_mode = False | 
					
						
						|  | self.first_and_last_mode = True | 
					
						
						|  | self.first_only = False | 
					
						
						|  | self.original_loss_weight = 0.5 | 
					
						
						|  |  | 
					
						
						|  | self.cumulative_residual = False | 
					
						
						|  | self.clever_residual = False | 
					
						
						|  | self.skip_residual = False | 
					
						
						|  | self.no_residual = True | 
					
						
						|  |  | 
					
						
						|  | self.optimize_lm_head_only_at_start = False | 
					
						
						|  | self.optimize_model_only_at_start = False | 
					
						
						|  |  | 
					
						
						|  | if self.optimize_model_only_at_start: | 
					
						
						|  | raise NotImplementedError | 
					
						
						|  | self.train_only_thinking_embedding = False | 
					
						
						|  | self.weighted_embeddings = False | 
					
						
						|  | self.use_start_thought_token = True | 
					
						
						|  | self.use_end_thought_token = True | 
					
						
						|  | self.initialize_thought_embedding_to_normal = False | 
					
						
						|  | self.initial_start_token = "---" | 
					
						
						|  | self.initial_end_token = "---" | 
					
						
						|  | self.output_logits_at_the_end = True | 
					
						
						|  |  | 
					
						
						|  | self.wandb_enabled = False | 
					
						
						|  | self.gumbel_temperature = 0.001 | 
					
						
						|  |  | 
					
						
						|  | self.use_policy_loss = True | 
					
						
						|  | self.include_policy_loss = True | 
					
						
						|  | self.trice_mode = True | 
					
						
						|  | self.remove_negative_rewards = True | 
					
						
						|  | self.use_policy_loss_for_end_thought = True | 
					
						
						|  |  | 
					
						
						|  | self.base_original_mode = False | 
					
						
						|  | self.original_mode = False | 
					
						
						|  |  | 
					
						
						|  | self.thought_prefix = "(Let's think step by step" | 
					
						
						|  | self.tokenized_thought_prefix = None | 
					
						
						|  | self.log_dict = defaultdict(int) | 
					
						
						|  | self.eval_log_dict = defaultdict(int) | 
					
						
						|  | self.loss_mean = loss_mean | 
					
						
						|  |  | 
					
						
						|  | self.start_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size)) | 
					
						
						|  | self.end_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size)) | 
					
						
						|  |  | 
					
						
						|  | self.policy_loss_beta = 1e6 | 
					
						
						|  | self.embedding_scale = 1e2 | 
					
						
						|  | self.temperature = nn.Parameter(torch.ones(1)) | 
					
						
						|  | self.max_temperature = config.max_temperature | 
					
						
						|  | self.complexity_factor = config.complexity_factor | 
					
						
						|  | self.reinforce_temperature = 3 | 
					
						
						|  | self.base_loss_beta = 1 | 
					
						
						|  | self.thinking_usefulness_head = nn.Linear(self.model.config.hidden_size, 1) | 
					
						
						|  | self.thinking_threshold = 0.5 | 
					
						
						|  | self.thinking_usefulness_loss_weight = 1e-2 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.use_thought_prefix = False | 
					
						
						|  | self.use_reparam_for_thought_embeddings = False | 
					
						
						|  | self.use_upper_triangular = False | 
					
						
						|  | self.subtract_mean_reward = False | 
					
						
						|  | self.comparison_mode = False | 
					
						
						|  | self.gumbel_detach = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.eval_mode = False | 
					
						
						|  |  | 
					
						
						|  | num_talk = 1 | 
					
						
						|  | talk_input_dim = config.hidden_size if not self.use_concat_talk_head else config.hidden_size * 2 | 
					
						
						|  | if self.use_weighted_talk_head: | 
					
						
						|  | talk_output_dim = 1 | 
					
						
						|  | else: | 
					
						
						|  | talk_output_dim = config.hidden_size if self.use_shallow_talk else config.vocab_size | 
					
						
						|  |  | 
					
						
						|  | if not self.merged_lm_and_talk_heads: | 
					
						
						|  | if self.use_complex_talk_head: | 
					
						
						|  | self.talk_head = nn.ModuleList([nn.Sequential( | 
					
						
						|  | nn.Linear(talk_input_dim, config.hidden_size), | 
					
						
						|  | nn.ReLU(), | 
					
						
						|  | nn.Linear(config.hidden_size, config.hidden_size), | 
					
						
						|  | nn.ReLU(), | 
					
						
						|  | nn.Linear(config.hidden_size, talk_output_dim, bias=False) | 
					
						
						|  | )]) | 
					
						
						|  | else: | 
					
						
						|  | self.talk_head = nn.ModuleList([nn.Sequential( | 
					
						
						|  | nn.Linear(talk_input_dim, talk_output_dim, bias=False) | 
					
						
						|  | )]) | 
					
						
						|  |  | 
					
						
						|  | self.apply(self._init_weights) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.dropout = nn.Dropout(config.hidden_dropout_prob) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.model.embed_tokens | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.model.embed_tokens = value | 
					
						
						|  |  | 
					
						
						|  | def get_output_embeddings(self): | 
					
						
						|  | return self.lm_head | 
					
						
						|  |  | 
					
						
						|  | def set_output_embeddings(self, new_embeddings): | 
					
						
						|  | self.lm_head = new_embeddings | 
					
						
						|  |  | 
					
						
						|  | def set_decoder(self, decoder): | 
					
						
						|  | self.model = decoder | 
					
						
						|  |  | 
					
						
						|  | def get_decoder(self): | 
					
						
						|  | return self.model | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, module): | 
					
						
						|  | if isinstance(module, nn.Linear): | 
					
						
						|  | nn.init.xavier_uniform_(module.weight) | 
					
						
						|  | if module.bias is not None: | 
					
						
						|  | nn.init.constant_(module.bias, 0) | 
					
						
						|  | elif isinstance(module, nn.Embedding): | 
					
						
						|  | nn.init.xavier_uniform_(module.weight) | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def generate(self, input_ids, attention_mask=None, streamer=None, **kwargs): | 
					
						
						|  | if attention_mask is None: | 
					
						
						|  | attention_mask = torch.ones_like(input_ids) | 
					
						
						|  |  | 
					
						
						|  | max_length = kwargs.get("max_length", 20) | 
					
						
						|  | temp = kwargs.get("temperature", 1.0) | 
					
						
						|  |  | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | finished_generating = torch.zeros(len(input_ids), dtype=torch.bool, device=input_ids.device) | 
					
						
						|  | for cur_token_idx in range(max_length): | 
					
						
						|  |  | 
					
						
						|  | new_ids = self( | 
					
						
						|  | input_ids[~finished_generating], | 
					
						
						|  | attention_mask=attention_mask[~finished_generating] | 
					
						
						|  | )['logits'] | 
					
						
						|  |  | 
					
						
						|  | new_ids[:, :, self.tokenizer.vocab_size:] = -float("inf") | 
					
						
						|  | for list_idx, answer_idx in enumerate((~finished_generating).nonzero(as_tuple=True)[0]): | 
					
						
						|  |  | 
					
						
						|  | base_answer_ids = input_ids[answer_idx] | 
					
						
						|  | new_answer_ids = new_ids[list_idx] | 
					
						
						|  | last_token_idx = (base_answer_ids != self.tokenizer.pad_token_id).nonzero(as_tuple=True)[0].max() | 
					
						
						|  |  | 
					
						
						|  | new_ids_sampled = torch.multinomial( | 
					
						
						|  | torch.nn.functional.softmax(new_answer_ids[last_token_idx] / temp, dim=-1), 1) | 
					
						
						|  |  | 
					
						
						|  | if last_token_idx + 1 >= len(base_answer_ids): | 
					
						
						|  |  | 
					
						
						|  | new_padding = torch.full((len(input_ids), 1), self.tokenizer.pad_token_id, dtype=torch.long, | 
					
						
						|  | device=input_ids.device) | 
					
						
						|  | input_ids = torch.cat([input_ids, new_padding], dim=-1) | 
					
						
						|  | attention_mask = torch.cat([attention_mask, torch.zeros_like(new_padding)], dim=-1) | 
					
						
						|  | attention_mask[answer_idx, last_token_idx + 1] = 1 | 
					
						
						|  | input_ids[answer_idx, last_token_idx + 1] = new_ids_sampled | 
					
						
						|  | if new_ids_sampled == self.tokenizer.eos_token_id or new_ids_sampled == self.tokenizer.bos_token_id or new_ids_sampled == self.tokenizer.pad_token_id: | 
					
						
						|  | finished_generating[answer_idx] = 1 | 
					
						
						|  | if finished_generating.all(): | 
					
						
						|  | break | 
					
						
						|  | return input_ids, attention_mask | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(QUIET_INPUTS_DOCSTRING) | 
					
						
						|  | @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  |  | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, CausalLMOutputWithPast]: | 
					
						
						|  | r""" | 
					
						
						|  | Args: | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | 
					
						
						|  | config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | 
					
						
						|  | (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | 
					
						
						|  | Returns: | 
					
						
						|  | Example: | 
					
						
						|  | ```python | 
					
						
						|  | >>> from transformers import AutoTokenizer, QuietForCausalLM | 
					
						
						|  | >>> model = QuietForCausalLM.from_pretrained("quietai/Quiet-7B-v0.1") | 
					
						
						|  | >>> tokenizer = AutoTokenizer.from_pretrained("quietai/Quiet-7B-v0.1") | 
					
						
						|  | >>> prompt = "Hey, are you conscious? Can you talk to me?" | 
					
						
						|  | >>> inputs = tokenizer(prompt, return_tensors="pt") | 
					
						
						|  | >>> # Generate | 
					
						
						|  | >>> generate_ids = model.generate(inputs.input_ids, max_length=30) | 
					
						
						|  | >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | 
					
						
						|  | "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." | 
					
						
						|  | ```""" | 
					
						
						|  |  | 
					
						
						|  | if not self.training: | 
					
						
						|  | n_ahead_talk_to_restore = self.n_ahead_talk | 
					
						
						|  | n_passes_to_restore = self.n_passes | 
					
						
						|  | self.n_ahead_talk = 1 | 
					
						
						|  | self.n_passes = 1 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | assert self.cumulative_residual or self.clever_residual or self.skip_residual or self.no_residual | 
					
						
						|  | assert not (self.skip_residual and self.use_policy_loss) | 
					
						
						|  |  | 
					
						
						|  | if self.tokenized_thought_prefix is None and self.use_thought_prefix: | 
					
						
						|  | self.tokenized_thought_prefix = self.tokenizer(self.thought_prefix, return_tensors="pt", add_special_tokens=False)["input_ids"] | 
					
						
						|  |  | 
					
						
						|  | def apply_head(head, states, detach=False): | 
					
						
						|  | if detach: | 
					
						
						|  | head_weight = head.weight.detach() | 
					
						
						|  | else: | 
					
						
						|  | head_weight = head.weight | 
					
						
						|  | head_weight = head_weight.to(states.device) | 
					
						
						|  | return (head_weight @ states.transpose(-1, -2)).transpose(-1, -2).contiguous() | 
					
						
						|  |  | 
					
						
						|  | def idx_if_sequential(head, idx=0): | 
					
						
						|  | if isinstance(head, nn.Sequential) or isinstance(head, nn.ModuleList): | 
					
						
						|  | return idx_if_sequential(head[idx], idx=idx) | 
					
						
						|  | return head | 
					
						
						|  |  | 
					
						
						|  | def none_repeat_interleave(x, n): | 
					
						
						|  | if x is None: | 
					
						
						|  | return x | 
					
						
						|  | return x.repeat_interleave(n, dim=0) | 
					
						
						|  |  | 
					
						
						|  | if self.n_passes > 1: | 
					
						
						|  | input_ids = none_repeat_interleave(input_ids, self.n_passes) | 
					
						
						|  | attention_mask = none_repeat_interleave(attention_mask, self.n_passes) | 
					
						
						|  | position_ids = none_repeat_interleave(position_ids, self.n_passes) | 
					
						
						|  | inputs_embeds = none_repeat_interleave(inputs_embeds, self.n_passes) | 
					
						
						|  | labels = none_repeat_interleave(labels, self.n_passes) | 
					
						
						|  | if past_key_values is not None: | 
					
						
						|  | past_key_values = [none_repeat_interleave(p, self.n_passes) for p in past_key_values] | 
					
						
						|  | cur_token_indices = torch.arange(input_ids.shape[1], device=input_ids.device) | 
					
						
						|  |  | 
					
						
						|  | self.tokenizer_has_start_thought_token = True | 
					
						
						|  | self.tokenizer_has_end_thought_token = True | 
					
						
						|  | if self.start_token_id is None: | 
					
						
						|  | self.start_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>") | 
					
						
						|  | if self.start_token_id == 0: | 
					
						
						|  | self.start_token_id = self.tokenizer.bos_token_id | 
					
						
						|  | self.tokenizer_has_start_thought_token = False | 
					
						
						|  | elif self.use_start_thought_token: | 
					
						
						|  |  | 
					
						
						|  | base_start_id = self.tokenizer.encode(self.initial_start_token, add_special_tokens=False)[0] | 
					
						
						|  | if self.initialize_thought_embedding_to_normal: | 
					
						
						|  | self.start_embedding.data = torch.zeros_like(self.start_embedding.data) | 
					
						
						|  | else: | 
					
						
						|  | self.start_embedding.data[0] = self.model.embed_tokens.weight.data[base_start_id].clone().detach() / self.embedding_scale | 
					
						
						|  | self.start_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale) | 
					
						
						|  | if self.end_token_id is None: | 
					
						
						|  | self.end_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>") | 
					
						
						|  | if self.end_token_id == 0: | 
					
						
						|  | self.end_token_id = self.tokenizer.eos_token_id | 
					
						
						|  | self.tokenizer_has_end_thought_token = False | 
					
						
						|  | elif self.use_end_thought_token: | 
					
						
						|  |  | 
					
						
						|  | base_end_id = self.tokenizer.encode(self.initial_end_token, add_special_tokens=False)[0] | 
					
						
						|  | if self.initialize_thought_embedding_to_normal: | 
					
						
						|  | self.end_embedding.data = torch.zeros_like(self.end_embedding.data) | 
					
						
						|  | else: | 
					
						
						|  | self.end_embedding.data[0] = self.model.embed_tokens.weight.data[base_end_id].clone().detach() / self.embedding_scale | 
					
						
						|  | self.end_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale) | 
					
						
						|  |  | 
					
						
						|  | if not self.rm_initialized and (self.n_ahead > 1 or not self.base_original_mode): | 
					
						
						|  | self.rm_initialized = True | 
					
						
						|  | if not self.use_shallow_talk: | 
					
						
						|  | head = self.talk_head[0] | 
					
						
						|  | cur_head = head[-1] if isinstance(head, nn.Sequential) else head | 
					
						
						|  | talk_input_dim = cur_head.weight.data.shape[1] | 
					
						
						|  | talk_output_dim = 1 if self.use_weighted_talk_head else self.lm_head.weight.data.shape[0] | 
					
						
						|  | cur_head.weight.data = torch.zeros(talk_output_dim, talk_input_dim, device=cur_head.weight.device, dtype=cur_head.weight.dtype) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | def lambda_transform(cur_head): | 
					
						
						|  |  | 
					
						
						|  | if cur_head.weight.data.shape[0] != cur_head.weight.data.shape[1]: | 
					
						
						|  | return torch.cat([ | 
					
						
						|  | torch.eye( | 
					
						
						|  | cur_head.weight.data.shape[0], | 
					
						
						|  | device=cur_head.weight.device, | 
					
						
						|  | dtype=cur_head.weight.dtype | 
					
						
						|  | ), | 
					
						
						|  | torch.zeros( | 
					
						
						|  | cur_head.weight.data.shape[0], | 
					
						
						|  | cur_head.weight.data.shape[1] - cur_head.weight.data.shape[0], | 
					
						
						|  | device=cur_head.weight.device, | 
					
						
						|  | dtype=cur_head.weight.dtype | 
					
						
						|  | )], dim=1) | 
					
						
						|  | return torch.eye( | 
					
						
						|  | cur_head.weight.data.shape[0], | 
					
						
						|  | device=cur_head.weight.device, | 
					
						
						|  | dtype=cur_head.weight.dtype | 
					
						
						|  | ) | 
					
						
						|  | if isinstance(self.talk_head[0], nn.Sequential): | 
					
						
						|  | for cur_head in self.talk_head[0]: | 
					
						
						|  |  | 
					
						
						|  | if hasattr(cur_head, "weight"): | 
					
						
						|  | cur_head.weight.data = lambda_transform(cur_head) | 
					
						
						|  | else: | 
					
						
						|  | self.talk_head[-1].weight.data = lambda_transform(self.talk_head[0]) | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | prev_rm_tokens = None | 
					
						
						|  | cur_rm_tokens = None | 
					
						
						|  | prev_rm_logits = None | 
					
						
						|  | prev_sample_probs = None | 
					
						
						|  | did_skip_sampling = None | 
					
						
						|  | skip_sampling = None | 
					
						
						|  | sample_probs = None | 
					
						
						|  | hidden_states = None | 
					
						
						|  | logits = None | 
					
						
						|  | talk_kl_penalty = None | 
					
						
						|  | rm_logits = None | 
					
						
						|  | residual_logits = None | 
					
						
						|  | probabilities_2d = None | 
					
						
						|  | prev_probabilities_2d = None | 
					
						
						|  | policy_reward = None | 
					
						
						|  | logits_to_output = None | 
					
						
						|  | batch_size, seq_len = input_ids.shape | 
					
						
						|  | base_input_ids = input_ids.clone() | 
					
						
						|  | loss_list = [] | 
					
						
						|  | dqn_loss_list = [] | 
					
						
						|  | sampled_token_history = [] | 
					
						
						|  | sample_probs_history = [] | 
					
						
						|  | action_loglikelihoods_list = [] | 
					
						
						|  |  | 
					
						
						|  | complexity_scores = self.compute_complexity_scores(input_ids, attention_mask) | 
					
						
						|  | temperature = self.temperature * complexity_scores.unsqueeze(-1) | 
					
						
						|  |  | 
					
						
						|  | if self.use_end_thought_token or self.use_start_thought_token: | 
					
						
						|  | if not self.use_reparam_for_thought_embeddings: | 
					
						
						|  | start_embedding = self.start_embedding[0].unsqueeze(0) * self.embedding_scale * temperature | 
					
						
						|  | end_embedding = self.end_embedding[0].unsqueeze(0) * self.embedding_scale * temperature | 
					
						
						|  | else: | 
					
						
						|  | start_embedding = self.start_embedding * self.embedding_scale * temperature | 
					
						
						|  | end_embedding = self.end_embedding * self.embedding_scale * temperature | 
					
						
						|  | base_embeddings = self.model.embed_tokens.weight | 
					
						
						|  | if self.train_only_thinking_embedding: | 
					
						
						|  | base_embeddings = base_embeddings.detach() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | fwd_iters = 1 if self.original_mode else self.n_ahead + self.n_ahead_talk - 1 | 
					
						
						|  | for ahead_idx in range(fwd_iters): | 
					
						
						|  | past_key_values_length = 0 | 
					
						
						|  | if past_key_values is not None: | 
					
						
						|  | use_legacy_cache = not isinstance(past_key_values, Cache) | 
					
						
						|  | if use_legacy_cache: | 
					
						
						|  | past_key_values = DynamicCache.from_legacy_cache(past_key_values) | 
					
						
						|  | past_key_values_length = past_key_values.get_usable_length(seq_len) | 
					
						
						|  |  | 
					
						
						|  | if position_ids is None: | 
					
						
						|  | device = input_ids.device if input_ids is not None else inputs_embeds.device | 
					
						
						|  | position_ids = torch.arange( | 
					
						
						|  | past_key_values_length, seq_len + past_key_values_length, dtype=torch.long, device=device | 
					
						
						|  | ) | 
					
						
						|  | position_ids = position_ids.unsqueeze(0).view(-1, seq_len) | 
					
						
						|  | else: | 
					
						
						|  | position_ids = position_ids.view(-1, seq_len).long() | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  | contains_start = self.use_start_thought_token and (input_ids == self.start_token_id).any() | 
					
						
						|  | contains_end = self.use_end_thought_token and (input_ids == self.end_token_id).any() | 
					
						
						|  | contains_thought = contains_start or contains_end | 
					
						
						|  | if contains_thought: | 
					
						
						|  | thought_id = self.start_token_id if contains_start else self.end_token_id | 
					
						
						|  | cur_thought_embedding = start_embedding if contains_start else end_embedding | 
					
						
						|  | if self.use_reparam_for_thought_embeddings: | 
					
						
						|  | inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype) | 
					
						
						|  | inputs_embeds = inputs_embeds.detach() * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0] | 
					
						
						|  | if contains_start: | 
					
						
						|  | sampled_start = inputs_embeds.clone().detach() | 
					
						
						|  | if contains_end: | 
					
						
						|  | sampled_end = inputs_embeds.clone().detach() | 
					
						
						|  | else: | 
					
						
						|  | inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1) | 
					
						
						|  | else: | 
					
						
						|  | with torch.set_grad_enabled(not self.train_only_thinking_embedding): | 
					
						
						|  | inputs_embeds = self.model.embed_tokens(input_ids) | 
					
						
						|  |  | 
					
						
						|  | if self.n_ahead != 1 or self.n_ahead_talk != 1 or self.comparison_mode: | 
					
						
						|  | if attention_mask is None: | 
					
						
						|  | base_attention_mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=0).to(input_ids.device) | 
					
						
						|  | base_attention_mask = base_attention_mask.view(1, 1, seq_len, seq_len) | 
					
						
						|  | base_attention_mask = base_attention_mask.repeat(input_ids.shape[0], 1, 1, 1) | 
					
						
						|  | attention_mask = base_attention_mask | 
					
						
						|  | breakpoint() | 
					
						
						|  | elif attention_mask.dim() == 2: | 
					
						
						|  | if seq_len + past_key_values_length != attention_mask.shape[-1]: | 
					
						
						|  | breakpoint() | 
					
						
						|  | attention_mask = torch.cat( | 
					
						
						|  | [torch.ones((attention_mask.shape[0], past_key_values_length), dtype=attention_mask.dtype, device=attention_mask.device), attention_mask], | 
					
						
						|  | dim=-1 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attention_mask = _prepare_4d_causal_attention_mask( | 
					
						
						|  | attention_mask, | 
					
						
						|  | (batch_size, seq_len), | 
					
						
						|  | inputs_embeds, | 
					
						
						|  | past_key_values_length, | 
					
						
						|  | sliding_window=self.config.sliding_window, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | outputs = self.model( | 
					
						
						|  |  | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  |  | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | prev_hidden_states = hidden_states | 
					
						
						|  | hidden_states = outputs[0] | 
					
						
						|  | prev_rm_logits = rm_logits | 
					
						
						|  | prev_rm_tokens = cur_rm_tokens | 
					
						
						|  |  | 
					
						
						|  | if ahead_idx == 0: | 
					
						
						|  | hidden_states_lm = hidden_states | 
					
						
						|  | logits = self.lm_head(hidden_states_lm) | 
					
						
						|  | base_hidden_states = hidden_states.clone() | 
					
						
						|  | initial_loss_logits = logits.clone() | 
					
						
						|  | if self.optimize_lm_head_only_at_start or self.optimize_model_only_at_start: | 
					
						
						|  | logits = logits.detach() | 
					
						
						|  | base_hidden_states = base_hidden_states.detach() | 
					
						
						|  | if self.optimize_model_only_at_start: | 
					
						
						|  | hidden_states = hidden_states.detach() | 
					
						
						|  | base_logits = logits.clone() | 
					
						
						|  | else: | 
					
						
						|  | talk_hidden_states = hidden_states | 
					
						
						|  | if self.merged_lm_and_talk_heads: | 
					
						
						|  | assert self.no_residual | 
					
						
						|  | residual_logits = self.lm_head(hidden_states) | 
					
						
						|  | talk_hidden_states = hidden_states | 
					
						
						|  | else: | 
					
						
						|  | if ahead_idx > self.n_ahead - 1: | 
					
						
						|  | cur_base_hidden = torch.cat([ | 
					
						
						|  | base_hidden_states[..., ahead_idx - self.n_ahead + 1:, :], | 
					
						
						|  | base_hidden_states[..., :ahead_idx - self.n_ahead + 1, :] | 
					
						
						|  | ], dim=-2) | 
					
						
						|  | else: | 
					
						
						|  | cur_base_hidden = base_hidden_states | 
					
						
						|  |  | 
					
						
						|  | if self.use_concat_talk_head: | 
					
						
						|  |  | 
					
						
						|  | head_input_hidden_states = torch.cat([cur_base_hidden, talk_hidden_states], dim=-1) | 
					
						
						|  | else: | 
					
						
						|  | head_input_hidden_states = talk_hidden_states | 
					
						
						|  |  | 
					
						
						|  | residual_logits = self.talk_head[0](head_input_hidden_states) | 
					
						
						|  | if self.use_shallow_talk: | 
					
						
						|  | residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start) | 
					
						
						|  | residual_logits = residual_logits.to(logits.device) | 
					
						
						|  | if self.use_weighted_talk_head: | 
					
						
						|  |  | 
					
						
						|  | residual_logits = cur_base_hidden * (1 - residual_logits) + talk_hidden_states * residual_logits | 
					
						
						|  | residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start) | 
					
						
						|  |  | 
					
						
						|  | assert sum([self.cumulative_residual, self.clever_residual, self.skip_residual, self.no_residual]) == 1 | 
					
						
						|  | if self.clever_residual: | 
					
						
						|  | if ahead_idx >= self.n_ahead - 1: | 
					
						
						|  |  | 
					
						
						|  | cur_base_logits = torch.cat([ | 
					
						
						|  | base_logits[..., ahead_idx - self.n_ahead + 1:, :], | 
					
						
						|  | base_logits[..., :ahead_idx - self.n_ahead + 1, :] | 
					
						
						|  | ], dim=-2) | 
					
						
						|  | if self.optimize_lm_head_only_at_start: | 
					
						
						|  | cur_base_logits = cur_base_logits.detach() | 
					
						
						|  | logits = cur_base_logits + residual_logits | 
					
						
						|  | else: | 
					
						
						|  | logits += residual_logits / self.n_ahead | 
					
						
						|  | elif self.cumulative_residual: | 
					
						
						|  | if self.residual_talk_head: | 
					
						
						|  | if ahead_idx < self.n_ahead: | 
					
						
						|  | logits += residual_logits | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | cur_base_logits = torch.cat([ | 
					
						
						|  | base_logits[..., ahead_idx - self.n_ahead + 1:, :], | 
					
						
						|  | base_logits[..., :ahead_idx - self.n_ahead + 1, :] | 
					
						
						|  | ], dim=-2) | 
					
						
						|  | if self.optimize_lm_head_only_at_start: | 
					
						
						|  | cur_base_logits = cur_base_logits.detach() | 
					
						
						|  | logits = cur_base_logits + residual_logits | 
					
						
						|  | else: | 
					
						
						|  | if ahead_idx < self.n_ahead: | 
					
						
						|  | logits += residual_logits | 
					
						
						|  | else: | 
					
						
						|  | logits = residual_logits | 
					
						
						|  | elif self.skip_residual: | 
					
						
						|  | if ahead_idx >= self.n_ahead: | 
					
						
						|  |  | 
					
						
						|  | cur_base_logits = torch.cat([ | 
					
						
						|  | base_logits[..., ahead_idx - self.n_ahead + 1:, :], | 
					
						
						|  | base_logits[..., :ahead_idx - self.n_ahead + 1, :] | 
					
						
						|  | ], dim=-2) | 
					
						
						|  | if self.optimize_lm_head_only_at_start: | 
					
						
						|  | cur_base_logits = cur_base_logits.detach() | 
					
						
						|  | logits = cur_base_logits | 
					
						
						|  | elif self.no_residual: | 
					
						
						|  | logits = residual_logits | 
					
						
						|  | else: | 
					
						
						|  | logits = base_logits + residual_logits | 
					
						
						|  |  | 
					
						
						|  | attempted = False | 
					
						
						|  | talk_loss_list = [] | 
					
						
						|  | if self.original_mode or (self.n_ahead == 1) or (self.comparison_mode and ahead_idx == 0): | 
					
						
						|  | loss = None | 
					
						
						|  | attempted = True | 
					
						
						|  |  | 
					
						
						|  | if labels is not None: | 
					
						
						|  | for shift_amount in range(self.n_ahead_talk): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if ahead_idx == 0 and self.optimize_lm_head_only_at_start: | 
					
						
						|  | loss_logits = initial_loss_logits | 
					
						
						|  | else: | 
					
						
						|  | loss_logits = logits | 
					
						
						|  | shift_logits = loss_logits[..., shift_amount:-1, :].contiguous() | 
					
						
						|  | shift_labels = labels[..., 1 + shift_amount:].contiguous() | 
					
						
						|  |  | 
					
						
						|  | loss_fct = CrossEntropyLoss(reduction="none") | 
					
						
						|  | print("Shift logits before:", shift_logits) | 
					
						
						|  | shift_logits = shift_logits.view(-1, self.config.vocab_size) | 
					
						
						|  | shift_labels = shift_labels.view(-1).clone() | 
					
						
						|  | print("shift logits after:", shift_logits) | 
					
						
						|  |  | 
					
						
						|  | shift_labels[shift_labels == self.tokenizer.pad_token_id] = -100 | 
					
						
						|  | shift_labels = shift_labels.to(shift_logits.device) | 
					
						
						|  | loss = loss_fct(shift_logits, shift_labels) | 
					
						
						|  | if not self.comparison_mode and not (self.optimize_lm_head_only_at_start and (self.n_ahead + self.n_ahead_talk > 2)) or self.original_mode: | 
					
						
						|  | loss_list.append(loss) | 
					
						
						|  | talk_loss_list.append(nonzero_mean(loss).detach()) | 
					
						
						|  |  | 
					
						
						|  | if not attempted or self.comparison_mode: | 
					
						
						|  | rm_hidden_states = hidden_states | 
					
						
						|  |  | 
					
						
						|  | rm_logits = apply_head(self.lm_head, rm_hidden_states, detach=self.optimize_lm_head_only_at_start) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.tokenizer_has_start_thought_token: | 
					
						
						|  | rm_logits[..., self.start_token_id] = -1e10 | 
					
						
						|  | if self.tokenizer_has_end_thought_token: | 
					
						
						|  | rm_logits[..., self.end_token_id] = -1e10 | 
					
						
						|  | probabilities = rm_logits | 
					
						
						|  | if probabilities_2d is not None: | 
					
						
						|  | prev_probabilities_2d = probabilities_2d.clone() | 
					
						
						|  | probabilities_2d = probabilities.view(-1, probabilities.size(-1)) | 
					
						
						|  |  | 
					
						
						|  | did_skip_sampling = skip_sampling | 
					
						
						|  | skip_sampling = False | 
					
						
						|  | if ahead_idx == 0 and self.use_start_thought_token: | 
					
						
						|  | override_token = self.start_token_id | 
					
						
						|  | elif self.use_thought_prefix and ahead_idx < self.tokenized_thought_prefix.shape[-1]: | 
					
						
						|  | override_token = self.tokenized_thought_prefix[..., ahead_idx] | 
					
						
						|  | elif ahead_idx == self.n_ahead - 2 and self.use_end_thought_token: | 
					
						
						|  | override_token = self.end_token_id | 
					
						
						|  | else: | 
					
						
						|  | override_token = None | 
					
						
						|  | if override_token is not None and self.n_ahead > 1: | 
					
						
						|  |  | 
					
						
						|  | probabilities_2d = torch.zeros_like(probabilities_2d) | 
					
						
						|  | probabilities_2d[:, override_token] = 1.0 | 
					
						
						|  | skip_sampling = True | 
					
						
						|  | elif ahead_idx >= self.n_ahead - 1: | 
					
						
						|  | if labels is not None: | 
					
						
						|  | cur_talk_n = ahead_idx - (self.n_ahead - 1) + 1 | 
					
						
						|  |  | 
					
						
						|  | shift_labels = labels[..., cur_talk_n:].contiguous().to(probabilities_2d.device) | 
					
						
						|  | padding = torch.full_like( | 
					
						
						|  | labels[..., :cur_talk_n], | 
					
						
						|  | self.tokenizer.pad_token_id, | 
					
						
						|  | dtype=torch.long, | 
					
						
						|  | device=shift_labels.device | 
					
						
						|  | ) | 
					
						
						|  | new_rm_tokens = torch.cat( | 
					
						
						|  | [shift_labels, padding], | 
					
						
						|  | dim=-1 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | new_rm_tokens = torch.clamp(new_rm_tokens, 0, self.vocab_size - 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | probabilities_2d = F.one_hot(new_rm_tokens, num_classes=self.vocab_size).reshape(-1, self.vocab_size).to(probabilities_2d.dtype) | 
					
						
						|  | else: | 
					
						
						|  | continue | 
					
						
						|  | temperature = self.gumbel_temperature if self.training else 0.001 | 
					
						
						|  | prev_sample_probs = sample_probs | 
					
						
						|  | sample_probs = probabilities_2d | 
					
						
						|  | if ahead_idx < self.n_ahead - 1 and not skip_sampling: | 
					
						
						|  | probabilities_2d = F.gumbel_softmax(sample_probs, tau=temperature, hard=True, dim=-1) | 
					
						
						|  | if self.gumbel_detach: | 
					
						
						|  | probabilities_2d = probabilities_2d.detach() | 
					
						
						|  | sampled_token_history.append(probabilities_2d.argmax(dim=-1).detach().cpu()) | 
					
						
						|  |  | 
					
						
						|  | contains_start = self.use_start_thought_token and (probabilities_2d[..., self.start_token_id].sum() > 0) | 
					
						
						|  | contains_end = self.use_end_thought_token and (probabilities_2d[..., self.end_token_id].sum() > 0) | 
					
						
						|  | contains_thought = contains_start or contains_end | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not contains_thought: | 
					
						
						|  | with torch.set_grad_enabled(not self.train_only_thinking_embedding): | 
					
						
						|  | inputs_embeds = probabilities_2d @ (self.model.embed_tokens.weight.to(probabilities.device).to(probabilities.dtype) * temperature) | 
					
						
						|  | else: | 
					
						
						|  | thought_id = self.start_token_id if contains_start else self.end_token_id | 
					
						
						|  | cur_thought_embedding = start_embedding if contains_start else end_embedding | 
					
						
						|  | if self.use_reparam_for_thought_embeddings: | 
					
						
						|  | inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype) | 
					
						
						|  | inputs_embeds = inputs_embeds * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0] | 
					
						
						|  | if contains_start: | 
					
						
						|  | sampled_start = inputs_embeds.clone().detach() | 
					
						
						|  | else: | 
					
						
						|  | sampled_end = inputs_embeds.clone().detach() | 
					
						
						|  | else: | 
					
						
						|  | inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1) | 
					
						
						|  | inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype) | 
					
						
						|  | inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | thinking_usefulness = self.thinking_usefulness_head(hidden_states).squeeze(-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | generate_thought_mask = thinking_usefulness > self.thinking_threshold | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | thinking_usefulness_loss = torch.mean(thinking_usefulness * (1 - generate_thought_mask.float())) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if loss is not None: | 
					
						
						|  | loss = loss + self.thinking_usefulness_loss_weight * thinking_usefulness_loss | 
					
						
						|  | else: | 
					
						
						|  | loss = self.thinking_usefulness_loss_weight * thinking_usefulness_loss | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if len(attention_mask.shape) == 2: | 
					
						
						|  | breakpoint() | 
					
						
						|  | else: | 
					
						
						|  | original_attention = attention_mask[..., :attention_mask.shape[-2]] | 
					
						
						|  | if self.use_upper_triangular: | 
					
						
						|  | new_attention = original_attention | 
					
						
						|  | else: | 
					
						
						|  | original_attention = original_attention == attention_mask.max() | 
					
						
						|  |  | 
					
						
						|  | if not attention_mask.dtype == torch.bfloat16: | 
					
						
						|  | new_attention = torch.eye( | 
					
						
						|  | seq_len, dtype=attention_mask.dtype, device=attention_mask.device | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | new_attention = torch.eye( | 
					
						
						|  | seq_len, dtype=torch.float32, device=attention_mask.device | 
					
						
						|  | ).to(attention_mask.dtype) | 
					
						
						|  |  | 
					
						
						|  | new_attention = new_attention.view(1, 1, seq_len, seq_len).repeat(input_ids.shape[0], 1, 1, 1) | 
					
						
						|  | new_attention = new_attention * original_attention | 
					
						
						|  | new_attention[new_attention == 0] = attention_mask.min() | 
					
						
						|  | new_attention[new_attention == 1] = attention_mask.max() | 
					
						
						|  | attention_mask = torch.cat([attention_mask, new_attention], dim=-1) | 
					
						
						|  | past_key_values = outputs.past_key_values | 
					
						
						|  | position_ids = position_ids + 1 | 
					
						
						|  |  | 
					
						
						|  | if labels is not None and (self.n_ahead > 1 or not self.base_original_mode): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if ahead_idx == 0 and self.optimize_lm_head_only_at_start: | 
					
						
						|  | loss_logits = initial_loss_logits | 
					
						
						|  | else: | 
					
						
						|  | loss_logits = logits | 
					
						
						|  | shift_idx = 1 + max(0, ahead_idx - (self.n_ahead - 1)) | 
					
						
						|  | shift_logits = loss_logits[..., :-shift_idx, :].contiguous() | 
					
						
						|  | shift_labels = labels[..., shift_idx:].contiguous() | 
					
						
						|  |  | 
					
						
						|  | loss_fct = CrossEntropyLoss(reduction="none") | 
					
						
						|  | shift_logits = shift_logits.view(-1, self.config.vocab_size) | 
					
						
						|  | shift_labels = shift_labels.view(-1) | 
					
						
						|  |  | 
					
						
						|  | shift_labels = shift_labels.to(shift_logits.device) | 
					
						
						|  |  | 
					
						
						|  | shift_labels = torch.where(shift_labels == self.tokenizer.pad_token_id, -100, shift_labels) | 
					
						
						|  | unreduced_loss = loss_fct(shift_logits, shift_labels) | 
					
						
						|  |  | 
					
						
						|  | if torch.any(unreduced_loss != unreduced_loss): | 
					
						
						|  |  | 
					
						
						|  | raise ValueError("NaN loss") | 
					
						
						|  | unreduced_loss = unreduced_loss.reshape(logits.shape[0], -1) | 
					
						
						|  | loss_list.append(unreduced_loss) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.use_policy_loss and ahead_idx > 0 and (ahead_idx > 1 or not self.use_start_thought_token): | 
					
						
						|  |  | 
					
						
						|  | previous_loss = loss_list[-2] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if ahead_idx < self.n_ahead - 1: | 
					
						
						|  | shift_amount = 0 | 
					
						
						|  | original_dqn_reward = (previous_loss - unreduced_loss).detach() | 
					
						
						|  | if self.first_and_last_mode: | 
					
						
						|  | original_dqn_reward = original_dqn_reward * 0.0 | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | shift_amount = max(0, ahead_idx - (self.n_ahead - 1)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cur_policy_shift_logits = initial_loss_logits[..., shift_amount:-1, :].contiguous().detach() | 
					
						
						|  | cur_policy_shift_labels = labels[..., 1 + shift_amount:].contiguous() | 
					
						
						|  |  | 
					
						
						|  | cur_policy_loss_fct = CrossEntropyLoss(reduction="none") | 
					
						
						|  | cur_policy_shift_logits = cur_policy_shift_logits.view(-1, self.config.vocab_size) | 
					
						
						|  | cur_policy_shift_labels = cur_policy_shift_labels.view(-1).clone() | 
					
						
						|  |  | 
					
						
						|  | cur_policy_shift_labels[cur_policy_shift_labels == self.tokenizer.pad_token_id] = -100 | 
					
						
						|  | cur_policy_shift_labels = cur_policy_shift_labels.to(cur_policy_shift_labels.device) | 
					
						
						|  | cur_policy_reward_base_loss = loss_fct( | 
					
						
						|  | cur_policy_shift_logits, cur_policy_shift_labels.to(cur_policy_shift_logits.device) | 
					
						
						|  | ).reshape(logits.shape[0], -1) | 
					
						
						|  | original_dqn_reward = cur_policy_reward_base_loss.detach() - unreduced_loss | 
					
						
						|  |  | 
					
						
						|  | if not did_skip_sampling: | 
					
						
						|  | nonzero_indices = prev_probabilities_2d.nonzero() | 
					
						
						|  | action_loglikelihoods = F.log_softmax(prev_sample_probs / self.reinforce_temperature, dim=-1)[nonzero_indices[:, 0], nonzero_indices[:, 1]] | 
					
						
						|  | action_loglikelihoods_2d = action_loglikelihoods.reshape(batch_size, -1)[:, :-1 - shift_amount] | 
					
						
						|  | action_loglikelihoods_list.append(action_loglikelihoods_2d) | 
					
						
						|  | if policy_reward is None: | 
					
						
						|  | policy_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)] | 
					
						
						|  | else: | 
					
						
						|  | if self.n_ahead_talk > shift_amount: | 
					
						
						|  | added_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)] | 
					
						
						|  | else: | 
					
						
						|  | added_reward = original_dqn_reward | 
					
						
						|  | policy_reward += added_reward | 
					
						
						|  |  | 
					
						
						|  | for action_loglikelihoods_2d in action_loglikelihoods_list: | 
					
						
						|  | train_policy_reward = policy_reward | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.trice_mode and self.n_passes > 1: | 
					
						
						|  | batched_policy_reward = train_policy_reward.reshape(-1, self.n_passes, train_policy_reward.shape[-1]) | 
					
						
						|  |  | 
					
						
						|  | train_policy_reward = batched_policy_reward - batched_policy_reward.mean(dim=1, keepdim=True) | 
					
						
						|  | train_policy_reward = train_policy_reward.reshape(-1, train_policy_reward.shape[-1]) | 
					
						
						|  |  | 
					
						
						|  | if self.subtract_mean_reward: | 
					
						
						|  | train_policy_reward = train_policy_reward - train_policy_reward.mean() | 
					
						
						|  | if self.remove_negative_rewards: | 
					
						
						|  | fixed_policy_reward = train_policy_reward.detach().clamp(min=0) | 
					
						
						|  | else: | 
					
						
						|  | fixed_policy_reward = train_policy_reward.detach() | 
					
						
						|  | actor_loss = -fixed_policy_reward * action_loglikelihoods_2d[:, :policy_reward.shape[-1]].to(policy_reward.device) | 
					
						
						|  | if action_loglikelihoods_2d.mean() < -1e4 and not self.use_policy_loss_just_for_thoughts: | 
					
						
						|  |  | 
					
						
						|  | break | 
					
						
						|  | dqn_loss_list.append(actor_loss.mean()) | 
					
						
						|  |  | 
					
						
						|  | if loss_list: | 
					
						
						|  | if self.first_and_last_mode: | 
					
						
						|  | loss = sum( | 
					
						
						|  | self.loss_mean(loss_list[-(i + 1)]) for i in range(self.n_ahead_talk) | 
					
						
						|  | ) * (1 - self.original_loss_weight) / self.n_ahead_talk | 
					
						
						|  | loss = loss + self.loss_mean(loss_list[0]) * self.original_loss_weight | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for i in range(1, len(loss_list) - self.n_ahead_talk): | 
					
						
						|  | loss_list[i] = loss_list[i] * math.nan | 
					
						
						|  | elif self.first_only: | 
					
						
						|  | loss = self.loss_mean(loss_list[0]) | 
					
						
						|  | elif self.final_only_mode: | 
					
						
						|  | loss = sum( | 
					
						
						|  | self.loss_mean(loss_list[-i]) for i in range(1, self.n_ahead_talk + 1) | 
					
						
						|  | ) / self.n_ahead_talk | 
					
						
						|  | else: | 
					
						
						|  | loss = None | 
					
						
						|  | for i in range(len(loss_list)): | 
					
						
						|  | cur_loss = self.loss_mean(loss_list[i]) | 
					
						
						|  | if loss is not None: | 
					
						
						|  | loss = loss + cur_loss.to(loss.device) | 
					
						
						|  | else: | 
					
						
						|  | loss = cur_loss | 
					
						
						|  | loss = loss / len(loss_list) | 
					
						
						|  | loss = loss + thinking_usefulness_loss | 
					
						
						|  |  | 
					
						
						|  | loss = loss * self.base_loss_beta | 
					
						
						|  |  | 
					
						
						|  | if dqn_loss_list: | 
					
						
						|  | dqn_loss = sum(dqn_loss_list) / len(dqn_loss_list) | 
					
						
						|  | if self.include_policy_loss: | 
					
						
						|  | if loss is not None: | 
					
						
						|  | loss += dqn_loss * self.policy_loss_beta | 
					
						
						|  | else: | 
					
						
						|  | loss = dqn_loss * self.policy_loss_beta | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (logits,) + outputs[1:] | 
					
						
						|  | return (loss,) + output if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | base_log_dict = { | 
					
						
						|  | f"loss_{i}": nonzero_mean(loss_list[i]) for i in range(len(loss_list)) | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | if loss is not None: | 
					
						
						|  | base_log_dict["loss_train"] = loss.item() | 
					
						
						|  |  | 
					
						
						|  | if not self.training: | 
					
						
						|  | self.n_ahead_talk = n_ahead_talk_to_restore | 
					
						
						|  | self.n_passes = n_passes_to_restore | 
					
						
						|  |  | 
					
						
						|  | del start_embedding | 
					
						
						|  | del end_embedding | 
					
						
						|  | torch.cuda.empty_cache() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return CausalLMOutputWithPast( | 
					
						
						|  | loss=loss if loss is not None else None, | 
					
						
						|  | logits=(rm_logits if self.n_ahead > 1 else logits) if not self.output_logits_at_the_end else logits, | 
					
						
						|  | past_key_values=outputs.past_key_values, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def compute_complexity_scores(self, input_ids, attention_mask): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | seq_lengths = torch.sum(attention_mask, dim=-1) | 
					
						
						|  | max_length = torch.max(seq_lengths) | 
					
						
						|  | length_scores = seq_lengths / max_length | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | rare_token_ids = self.get_rare_token_ids() | 
					
						
						|  | rare_token_mask = torch.isin(input_ids, rare_token_ids) | 
					
						
						|  | rare_token_counts = torch.sum(rare_token_mask, dim=-1) | 
					
						
						|  | rare_token_scores = rare_token_counts / seq_lengths | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | complexity_scores = self.complexity_factor * length_scores + (1 - self.complexity_factor) * rare_token_scores | 
					
						
						|  | return complexity_scores | 
					
						
						|  |  | 
					
						
						|  | def get_rare_token_ids(self): | 
					
						
						|  |  | 
					
						
						|  | frequency_threshold = 1e-4 | 
					
						
						|  | token_counts = torch.bincount(self.model.embed_tokens.weight.argmax(dim=-1)) | 
					
						
						|  | total_tokens = torch.sum(token_counts) | 
					
						
						|  | rare_token_mask = token_counts / total_tokens < frequency_threshold | 
					
						
						|  | rare_token_ids = torch.nonzero(rare_token_mask).squeeze(-1) | 
					
						
						|  | return rare_token_ids | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare_inputs_for_generation( | 
					
						
						|  | self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | if past_key_values is not None: | 
					
						
						|  | if isinstance(past_key_values, Cache): | 
					
						
						|  | cache_length = past_key_values.get_seq_length() | 
					
						
						|  | past_length = past_key_values.seen_tokens | 
					
						
						|  | max_cache_length = past_key_values.get_max_length() | 
					
						
						|  | else: | 
					
						
						|  | cache_length = past_length = past_key_values[0][0].shape[2] | 
					
						
						|  | max_cache_length = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: | 
					
						
						|  | input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | elif past_length < input_ids.shape[1]: | 
					
						
						|  | input_ids = input_ids[:, past_length:] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | max_cache_length is not None | 
					
						
						|  | and attention_mask is not None | 
					
						
						|  | and cache_length + input_ids.shape[1] > max_cache_length | 
					
						
						|  | ): | 
					
						
						|  | attention_mask = attention_mask[:, -max_cache_length:] | 
					
						
						|  |  | 
					
						
						|  | position_ids = kwargs.get("position_ids", None) | 
					
						
						|  | if attention_mask is not None and position_ids is None: | 
					
						
						|  |  | 
					
						
						|  | position_ids = attention_mask.long().cumsum(-1) - 1 | 
					
						
						|  | position_ids.masked_fill_(attention_mask == 0, 1) | 
					
						
						|  | if past_key_values: | 
					
						
						|  | position_ids = position_ids[:, -input_ids.shape[1] :] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is not None and past_key_values is None: | 
					
						
						|  | model_inputs = {"inputs_embeds": inputs_embeds} | 
					
						
						|  | else: | 
					
						
						|  | model_inputs = {"input_ids": input_ids} | 
					
						
						|  |  | 
					
						
						|  | model_inputs.update( | 
					
						
						|  | { | 
					
						
						|  | "position_ids": position_ids, | 
					
						
						|  | "past_key_values": past_key_values, | 
					
						
						|  | "use_cache": kwargs.get("use_cache"), | 
					
						
						|  | "attention_mask": attention_mask, | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | return model_inputs | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def _reorder_cache(past_key_values, beam_idx): | 
					
						
						|  | reordered_past = () | 
					
						
						|  | for layer_past in past_key_values: | 
					
						
						|  | reordered_past += ( | 
					
						
						|  | tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), | 
					
						
						|  | ) | 
					
						
						|  | return reordered_past | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """ | 
					
						
						|  | The Quiet Model transformer with a sequence classification head on top (linear layer). | 
					
						
						|  | [`QuietForSequenceClassification`] uses the last token in order to do the classification, as other causal models | 
					
						
						|  | (e.g. GPT-2) do. | 
					
						
						|  | Since it does classification on the last token, it requires to know the position of the last token. If a | 
					
						
						|  | `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If | 
					
						
						|  | no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the | 
					
						
						|  | padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in | 
					
						
						|  | each row of the batch). | 
					
						
						|  | """, | 
					
						
						|  | QUIET_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | class QuietForSequenceClassification(QuietPreTrainedModel): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.num_labels = config.num_labels | 
					
						
						|  | self.model = QuietModel(config) | 
					
						
						|  | self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.model.embed_tokens | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.model.embed_tokens = value | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(QUIET_INPUTS_DOCSTRING) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, SequenceClassifierOutputWithPast]: | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | 
					
						
						|  | config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | 
					
						
						|  | `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | transformer_outputs = self.model( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = transformer_outputs[0] | 
					
						
						|  | logits = self.score(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | if input_ids is not None: | 
					
						
						|  | batch_size = input_ids.shape[0] | 
					
						
						|  | else: | 
					
						
						|  | batch_size = inputs_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | if self.config.pad_token_id is None and batch_size != 1: | 
					
						
						|  | raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") | 
					
						
						|  | if self.config.pad_token_id is None: | 
					
						
						|  | sequence_lengths = -1 | 
					
						
						|  | else: | 
					
						
						|  | if input_ids is not None: | 
					
						
						|  |  | 
					
						
						|  | sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 | 
					
						
						|  | sequence_lengths = sequence_lengths % input_ids.shape[-1] | 
					
						
						|  | sequence_lengths = sequence_lengths.to(logits.device) | 
					
						
						|  | else: | 
					
						
						|  | sequence_lengths = -1 | 
					
						
						|  |  | 
					
						
						|  | pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | labels = labels.to(logits.device) | 
					
						
						|  | if self.config.problem_type is None: | 
					
						
						|  | if self.num_labels == 1: | 
					
						
						|  | self.config.problem_type = "regression" | 
					
						
						|  | elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | 
					
						
						|  | self.config.problem_type = "single_label_classification" | 
					
						
						|  | else: | 
					
						
						|  | self.config.problem_type = "multi_label_classification" | 
					
						
						|  |  | 
					
						
						|  | if self.config.problem_type == "regression": | 
					
						
						|  | loss_fct = MSELoss() | 
					
						
						|  | if self.num_labels == 1: | 
					
						
						|  | loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | 
					
						
						|  | else: | 
					
						
						|  | loss = loss_fct(pooled_logits, labels) | 
					
						
						|  | elif self.config.problem_type == "single_label_classification": | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) | 
					
						
						|  | elif self.config.problem_type == "multi_label_classification": | 
					
						
						|  | loss_fct = BCEWithLogitsLoss() | 
					
						
						|  | loss = loss_fct(pooled_logits, labels) | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (pooled_logits,) + transformer_outputs[1:] | 
					
						
						|  | return ((loss,) + output) if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return SequenceClassifierOutputWithPast( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=pooled_logits, | 
					
						
						|  | past_key_values=transformer_outputs.past_key_values, | 
					
						
						|  | hidden_states=transformer_outputs.hidden_states, | 
					
						
						|  | attentions=transformer_outputs.attentions, | 
					
						
						|  | ) |