File size: 27,198 Bytes
0ce1ebe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 |
from __future__ import print_function, unicode_literals, absolute_import, division
import numpy as np
import warnings
import math
from tqdm import tqdm
from csbdeep.models import BaseConfig
from csbdeep.internals.blocks import unet_block
from csbdeep.utils import _raise, backend_channels_last, axes_check_and_normalize, axes_dict
from csbdeep.utils.tf import keras_import, IS_TF_1, CARETensorBoard, CARETensorBoardImage
from skimage.segmentation import clear_border
from skimage.measure import regionprops
from scipy.ndimage import zoom
from distutils.version import LooseVersion
keras = keras_import()
K = keras_import('backend')
Input, Conv2D, MaxPooling2D = keras_import('layers', 'Input', 'Conv2D', 'MaxPooling2D')
Model = keras_import('models', 'Model')
from .base import StarDistBase, StarDistDataBase, _tf_version_at_least
from ..sample_patches import sample_patches
from ..utils import edt_prob, _normalize_grid, mask_to_categorical
from ..geometry import star_dist, dist_to_coord, polygons_to_label
from ..nms import non_maximum_suppression, non_maximum_suppression_sparse
class StarDistData2D(StarDistDataBase):
def __init__(self, X, Y, batch_size, n_rays, length,
n_classes=None, classes=None,
patch_size=(256,256), b=32, grid=(1,1), shape_completion=False, augmenter=None, foreground_prob=0, **kwargs):
super().__init__(X=X, Y=Y, n_rays=n_rays, grid=grid,
n_classes=n_classes, classes=classes,
batch_size=batch_size, patch_size=patch_size, length=length,
augmenter=augmenter, foreground_prob=foreground_prob, **kwargs)
self.shape_completion = bool(shape_completion)
if self.shape_completion and b > 0:
self.b = slice(b,-b),slice(b,-b)
else:
self.b = slice(None),slice(None)
self.sd_mode = 'opencl' if self.use_gpu else 'cpp'
def __getitem__(self, i):
idx = self.batch(i)
arrays = [sample_patches((self.Y[k],) + self.channels_as_tuple(self.X[k]),
patch_size=self.patch_size, n_samples=1,
valid_inds=self.get_valid_inds(k)) for k in idx]
if self.n_channel is None:
X, Y = list(zip(*[(x[0][self.b],y[0]) for y,x in arrays]))
else:
X, Y = list(zip(*[(np.stack([_x[0] for _x in x],axis=-1)[self.b], y[0]) for y,*x in arrays]))
X, Y = tuple(zip(*tuple(self.augmenter(_x, _y) for _x, _y in zip(X,Y))))
prob = np.stack([edt_prob(lbl[self.b][self.ss_grid[1:3]]) for lbl in Y])
# prob = np.stack([edt_prob(lbl[self.b]) for lbl in Y])
# prob = prob[self.ss_grid]
if self.shape_completion:
Y_cleared = [clear_border(lbl) for lbl in Y]
_dist = np.stack([star_dist(lbl,self.n_rays,mode=self.sd_mode)[self.b+(slice(None),)] for lbl in Y_cleared])
dist = _dist[self.ss_grid]
dist_mask = np.stack([edt_prob(lbl[self.b][self.ss_grid[1:3]]) for lbl in Y_cleared])
else:
# directly subsample with grid
dist = np.stack([star_dist(lbl,self.n_rays,mode=self.sd_mode, grid=self.grid) for lbl in Y])
dist_mask = prob
X = np.stack(X)
if X.ndim == 3: # input image has no channel axis
X = np.expand_dims(X,-1)
prob = np.expand_dims(prob,-1)
dist_mask = np.expand_dims(dist_mask,-1)
# subsample wth given grid
# dist_mask = dist_mask[self.ss_grid]
# prob = prob[self.ss_grid]
# append dist_mask to dist as additional channel
# dist_and_mask = np.concatenate([dist,dist_mask],axis=-1)
# faster than concatenate
dist_and_mask = np.empty(dist.shape[:-1]+(self.n_rays+1,), np.float32)
dist_and_mask[...,:-1] = dist
dist_and_mask[...,-1:] = dist_mask
if self.n_classes is None:
return [X], [prob,dist_and_mask]
else:
prob_class = np.stack(tuple((mask_to_categorical(y, self.n_classes, self.classes[k]) for y,k in zip(Y, idx))))
# TODO: investigate downsampling via simple indexing vs. using 'zoom'
# prob_class = prob_class[self.ss_grid]
# 'zoom' might lead to better registered maps (especially if upscaled later)
prob_class = zoom(prob_class, (1,)+tuple(1/g for g in self.grid)+(1,), order=0)
return [X], [prob,dist_and_mask, prob_class]
class Config2D(BaseConfig):
"""Configuration for a :class:`StarDist2D` model.
Parameters
----------
axes : str or None
Axes of the input images.
n_rays : int
Number of radial directions for the star-convex polygon.
Recommended to use a power of 2 (default: 32).
n_channel_in : int
Number of channels of given input image (default: 1).
grid : (int,int)
Subsampling factors (must be powers of 2) for each of the axes.
Model will predict on a subsampled grid for increased efficiency and larger field of view.
n_classes : None or int
Number of object classes to use for multi-class predection (use None to disable)
backbone : str
Name of the neural network architecture to be used as backbone.
kwargs : dict
Overwrite (or add) configuration attributes (see below).
Attributes
----------
unet_n_depth : int
Number of U-Net resolution levels (down/up-sampling layers).
unet_kernel_size : (int,int)
Convolution kernel size for all (U-Net) convolution layers.
unet_n_filter_base : int
Number of convolution kernels (feature channels) for first U-Net layer.
Doubled after each down-sampling layer.
unet_pool : (int,int)
Maxpooling size for all (U-Net) convolution layers.
net_conv_after_unet : int
Number of filters of the extra convolution layer after U-Net (0 to disable).
unet_* : *
Additional parameters for U-net backbone.
train_shape_completion : bool
Train model to predict complete shapes for partially visible objects at image boundary.
train_completion_crop : int
If 'train_shape_completion' is set to True, specify number of pixels to crop at boundary of training patches.
Should be chosen based on (largest) object sizes.
train_patch_size : (int,int)
Size of patches to be cropped from provided training images.
train_background_reg : float
Regularizer to encourage distance predictions on background regions to be 0.
train_foreground_only : float
Fraction (0..1) of patches that will only be sampled from regions that contain foreground pixels.
train_sample_cache : bool
Activate caching of valid patch regions for all training images (disable to save memory for large datasets)
train_dist_loss : str
Training loss for star-convex polygon distances ('mse' or 'mae').
train_loss_weights : tuple of float
Weights for losses relating to (probability, distance)
train_epochs : int
Number of training epochs.
train_steps_per_epoch : int
Number of parameter update steps per epoch.
train_learning_rate : float
Learning rate for training.
train_batch_size : int
Batch size for training.
train_n_val_patches : int
Number of patches to be extracted from validation images (``None`` = one patch per image).
train_tensorboard : bool
Enable TensorBoard for monitoring training progress.
train_reduce_lr : dict
Parameter :class:`dict` of ReduceLROnPlateau_ callback; set to ``None`` to disable.
use_gpu : bool
Indicate that the data generator should use OpenCL to do computations on the GPU.
.. _ReduceLROnPlateau: https://keras.io/api/callbacks/reduce_lr_on_plateau/
"""
def __init__(self, axes='YX', n_rays=32, n_channel_in=1, grid=(1,1), n_classes=None, backbone='unet', **kwargs):
"""See class docstring."""
super().__init__(axes=axes, n_channel_in=n_channel_in, n_channel_out=1+n_rays)
# directly set by parameters
self.n_rays = int(n_rays)
self.grid = _normalize_grid(grid,2)
self.backbone = str(backbone).lower()
self.n_classes = None if n_classes is None else int(n_classes)
# default config (can be overwritten by kwargs below)
if self.backbone == 'unet':
self.unet_n_depth = 3
self.unet_kernel_size = 3,3
self.unet_n_filter_base = 32
self.unet_n_conv_per_depth = 2
self.unet_pool = 2,2
self.unet_activation = 'relu'
self.unet_last_activation = 'relu'
self.unet_batch_norm = False
self.unet_dropout = 0.0
self.unet_prefix = ''
self.net_conv_after_unet = 128
else:
# TODO: resnet backbone for 2D model?
raise ValueError("backbone '%s' not supported." % self.backbone)
# net_mask_shape not needed but kept for legacy reasons
if backend_channels_last():
self.net_input_shape = None,None,self.n_channel_in
self.net_mask_shape = None,None,1
else:
self.net_input_shape = self.n_channel_in,None,None
self.net_mask_shape = 1,None,None
self.train_shape_completion = False
self.train_completion_crop = 32
self.train_patch_size = 256,256
self.train_background_reg = 1e-4
self.train_foreground_only = 0.9
self.train_sample_cache = True
self.train_dist_loss = 'mae'
self.train_loss_weights = (1,0.2) if self.n_classes is None else (1,0.2,1)
self.train_class_weights = (1,1) if self.n_classes is None else (1,)*(self.n_classes+1)
self.train_epochs = 400
self.train_steps_per_epoch = 100
self.train_learning_rate = 0.0003
self.train_batch_size = 4
self.train_n_val_patches = None
self.train_tensorboard = True
# the parameter 'min_delta' was called 'epsilon' for keras<=2.1.5
min_delta_key = 'epsilon' if LooseVersion(keras.__version__)<=LooseVersion('2.1.5') else 'min_delta'
self.train_reduce_lr = {'factor': 0.5, 'patience': 40, min_delta_key: 0}
self.use_gpu = False
# remove derived attributes that shouldn't be overwritten
for k in ('n_dim', 'n_channel_out'):
try: del kwargs[k]
except KeyError: pass
self.update_parameters(False, **kwargs)
# FIXME: put into is_valid()
if not len(self.train_loss_weights) == (2 if self.n_classes is None else 3):
raise ValueError(f"train_loss_weights {self.train_loss_weights} not compatible with n_classes ({self.n_classes}): must be 3 weights if n_classes is not None, otherwise 2")
if not len(self.train_class_weights) == (2 if self.n_classes is None else self.n_classes+1):
raise ValueError(f"train_class_weights {self.train_class_weights} not compatible with n_classes ({self.n_classes}): must be 'n_classes + 1' weights if n_classes is not None, otherwise 2")
class StarDist2D(StarDistBase):
"""StarDist2D model.
Parameters
----------
config : :class:`Config` or None
Will be saved to disk as JSON (``config.json``).
If set to ``None``, will be loaded from disk (must exist).
name : str or None
Model name. Uses a timestamp if set to ``None`` (default).
basedir : str
Directory that contains (or will contain) a folder with the given model name.
Raises
------
FileNotFoundError
If ``config=None`` and config cannot be loaded from disk.
ValueError
Illegal arguments, including invalid configuration.
Attributes
----------
config : :class:`Config`
Configuration, as provided during instantiation.
keras_model : `Keras model <https://keras.io/getting-started/functional-api-guide/>`_
Keras neural network model.
name : str
Model name.
logdir : :class:`pathlib.Path`
Path to model folder (which stores configuration, weights, etc.)
"""
def __init__(self, config=Config2D(), name=None, basedir='.'):
"""See class docstring."""
super().__init__(config, name=name, basedir=basedir)
def _build(self):
self.config.backbone == 'unet' or _raise(NotImplementedError())
unet_kwargs = {k[len('unet_'):]:v for (k,v) in vars(self.config).items() if k.startswith('unet_')}
input_img = Input(self.config.net_input_shape, name='input')
# maxpool input image to grid size
pooled = np.array([1,1])
pooled_img = input_img
while tuple(pooled) != tuple(self.config.grid):
pool = 1 + (np.asarray(self.config.grid) > pooled)
pooled *= pool
for _ in range(self.config.unet_n_conv_per_depth):
pooled_img = Conv2D(self.config.unet_n_filter_base, self.config.unet_kernel_size,
padding='same', activation=self.config.unet_activation)(pooled_img)
pooled_img = MaxPooling2D(pool)(pooled_img)
unet_base = unet_block(**unet_kwargs)(pooled_img)
if self.config.net_conv_after_unet > 0:
unet = Conv2D(self.config.net_conv_after_unet, self.config.unet_kernel_size,
name='features', padding='same', activation=self.config.unet_activation)(unet_base)
else:
unet = unet_base
output_prob = Conv2D( 1, (1,1), name='prob', padding='same', activation='sigmoid')(unet)
output_dist = Conv2D(self.config.n_rays, (1,1), name='dist', padding='same', activation='linear')(unet)
# attach extra classification head when self.n_classes is given
if self._is_multiclass():
if self.config.net_conv_after_unet > 0:
unet_class = Conv2D(self.config.net_conv_after_unet, self.config.unet_kernel_size,
name='features_class', padding='same', activation=self.config.unet_activation)(unet_base)
else:
unet_class = unet_base
output_prob_class = Conv2D(self.config.n_classes+1, (1,1), name='prob_class', padding='same', activation='softmax')(unet_class)
return Model([input_img], [output_prob,output_dist,output_prob_class])
else:
return Model([input_img], [output_prob,output_dist])
def train(self, X, Y, validation_data, classes='auto', augmenter=None, seed=None, epochs=None, steps_per_epoch=None, workers=1):
"""Train the neural network with the given data.
Parameters
----------
X : tuple, list, `numpy.ndarray`, `keras.utils.Sequence`
Input images
Y : tuple, list, `numpy.ndarray`, `keras.utils.Sequence`
Label masks
classes (optional): 'auto' or iterable of same length as X
label id -> class id mapping for each label mask of Y if multiclass prediction is activated (n_classes > 0)
list of dicts with label id -> class id (1,...,n_classes)
'auto' -> all objects will be assigned to the first non-background class,
or will be ignored if config.n_classes is None
validation_data : tuple(:class:`numpy.ndarray`, :class:`numpy.ndarray`) or triple (if multiclass)
Tuple (triple if multiclass) of X,Y,[classes] validation data.
augmenter : None or callable
Function with expected signature ``xt, yt = augmenter(x, y)``
that takes in a single pair of input/label image (x,y) and returns
the transformed images (xt, yt) for the purpose of data augmentation
during training. Not applied to validation images.
Example:
def simple_augmenter(x,y):
x = x + 0.05*np.random.normal(0,1,x.shape)
return x,y
seed : int
Convenience to set ``np.random.seed(seed)``. (To obtain reproducible validation patches, etc.)
epochs : int
Optional argument to use instead of the value from ``config``.
steps_per_epoch : int
Optional argument to use instead of the value from ``config``.
Returns
-------
``History`` object
See `Keras training history <https://keras.io/models/model/#fit>`_.
"""
if seed is not None:
# https://keras.io/getting-started/faq/#how-can-i-obtain-reproducible-results-using-keras-during-development
np.random.seed(seed)
if epochs is None:
epochs = self.config.train_epochs
if steps_per_epoch is None:
steps_per_epoch = self.config.train_steps_per_epoch
classes = self._parse_classes_arg(classes, len(X))
if not self._is_multiclass() and classes is not None:
warnings.warn("Ignoring given classes as n_classes is set to None")
isinstance(validation_data,(list,tuple)) or _raise(ValueError())
if self._is_multiclass() and len(validation_data) == 2:
validation_data = tuple(validation_data) + ('auto',)
((len(validation_data) == (3 if self._is_multiclass() else 2))
or _raise(ValueError(f'len(validation_data) = {len(validation_data)}, but should be {3 if self._is_multiclass() else 2}')))
patch_size = self.config.train_patch_size
axes = self.config.axes.replace('C','')
b = self.config.train_completion_crop if self.config.train_shape_completion else 0
div_by = self._axes_div_by(axes)
[(p-2*b) % d == 0 or _raise(ValueError(
"'train_patch_size' - 2*'train_completion_crop' must be divisible by {d} along axis '{a}'".format(a=a,d=d) if self.config.train_shape_completion else
"'train_patch_size' must be divisible by {d} along axis '{a}'".format(a=a,d=d)
)) for p,d,a in zip(patch_size,div_by,axes)]
if not self._model_prepared:
self.prepare_for_training()
data_kwargs = dict (
n_rays = self.config.n_rays,
patch_size = self.config.train_patch_size,
grid = self.config.grid,
shape_completion = self.config.train_shape_completion,
b = self.config.train_completion_crop,
use_gpu = self.config.use_gpu,
foreground_prob = self.config.train_foreground_only,
n_classes = self.config.n_classes,
sample_ind_cache = self.config.train_sample_cache,
)
# generate validation data and store in numpy arrays
n_data_val = len(validation_data[0])
classes_val = self._parse_classes_arg(validation_data[2], n_data_val) if self._is_multiclass() else None
n_take = self.config.train_n_val_patches if self.config.train_n_val_patches is not None else n_data_val
_data_val = StarDistData2D(validation_data[0],validation_data[1], classes=classes_val, batch_size=n_take, length=1, **data_kwargs)
data_val = _data_val[0]
# expose data generator as member for general diagnostics
self.data_train = StarDistData2D(X, Y, classes=classes, batch_size=self.config.train_batch_size,
augmenter=augmenter, length=epochs*steps_per_epoch, **data_kwargs)
if self.config.train_tensorboard:
# show dist for three rays
_n = min(3, self.config.n_rays)
channel = axes_dict(self.config.axes)['C']
output_slices = [[slice(None)]*4,[slice(None)]*4]
output_slices[1][1+channel] = slice(0,(self.config.n_rays//_n)*_n, self.config.n_rays//_n)
if self._is_multiclass():
_n = min(3, self.config.n_classes)
output_slices += [[slice(None)]*4]
output_slices[2][1+channel] = slice(1,1+(self.config.n_classes//_n)*_n, self.config.n_classes//_n)
if IS_TF_1:
for cb in self.callbacks:
if isinstance(cb,CARETensorBoard):
cb.output_slices = output_slices
# target image for dist includes dist_mask and thus has more channels than dist output
cb.output_target_shapes = [None,[None]*4,None]
cb.output_target_shapes[1][1+channel] = data_val[1][1].shape[1+channel]
elif self.basedir is not None and not any(isinstance(cb,CARETensorBoardImage) for cb in self.callbacks):
self.callbacks.append(CARETensorBoardImage(model=self.keras_model, data=data_val, log_dir=str(self.logdir/'logs'/'images'),
n_images=3, prob_out=False, output_slices=output_slices))
fit = self.keras_model.fit_generator if IS_TF_1 else self.keras_model.fit
history = fit(iter(self.data_train), validation_data=data_val,
epochs=epochs, steps_per_epoch=steps_per_epoch,
workers=workers, use_multiprocessing=workers>1,
callbacks=self.callbacks, verbose=1,
# set validation batchsize to training batchsize (only works for tf >= 2.2)
**(dict(validation_batch_size = self.config.train_batch_size) if _tf_version_at_least("2.2.0") else {}))
self._training_finished()
return history
# def _instances_from_prediction_old(self, img_shape, prob, dist,points = None, prob_class = None, prob_thresh=None, nms_thresh=None, overlap_label = None, **nms_kwargs):
# from stardist.geometry.geom2d import _polygons_to_label_old, _dist_to_coord_old
# from stardist.nms import _non_maximum_suppression_old
# if prob_thresh is None: prob_thresh = self.thresholds.prob
# if nms_thresh is None: nms_thresh = self.thresholds.nms
# if overlap_label is not None: raise NotImplementedError("overlap_label not supported for 2D yet!")
# coord = _dist_to_coord_old(dist, grid=self.config.grid)
# inds = _non_maximum_suppression_old(coord, prob, grid=self.config.grid,
# prob_thresh=prob_thresh, nms_thresh=nms_thresh, **nms_kwargs)
# labels = _polygons_to_label_old(coord, prob, inds, shape=img_shape)
# # sort 'inds' such that ids in 'labels' map to entries in polygon dictionary entries
# inds = inds[np.argsort(prob[inds[:,0],inds[:,1]])]
# # adjust for grid
# points = inds*np.array(self.config.grid)
# res_dict = dict(coord=coord[inds[:,0],inds[:,1]], points=points, prob=prob[inds[:,0],inds[:,1]])
# if prob_class is not None:
# prob_class = np.asarray(prob_class)
# res_dict.update(dict(class_prob = prob_class))
# return labels, res_dict
def _instances_from_prediction(self, img_shape, prob, dist, points=None, prob_class=None, prob_thresh=None, nms_thresh=None, overlap_label=None, return_labels=True, scale=None, **nms_kwargs):
"""
if points is None -> dense prediction
if points is not None -> sparse prediction
if prob_class is None -> single class prediction
if prob_class is not None -> multi class prediction
"""
if prob_thresh is None: prob_thresh = self.thresholds.prob
if nms_thresh is None: nms_thresh = self.thresholds.nms
if overlap_label is not None: raise NotImplementedError("overlap_label not supported for 2D yet!")
# sparse prediction
if points is not None:
points, probi, disti, indsi = non_maximum_suppression_sparse(dist, prob, points, nms_thresh=nms_thresh, **nms_kwargs)
if prob_class is not None:
prob_class = prob_class[indsi]
# dense prediction
else:
points, probi, disti = non_maximum_suppression(dist, prob, grid=self.config.grid,
prob_thresh=prob_thresh, nms_thresh=nms_thresh, **nms_kwargs)
if prob_class is not None:
inds = tuple(p//g for p,g in zip(points.T, self.config.grid))
prob_class = prob_class[inds]
if scale is not None:
# need to undo the scaling given by the scale dict, e.g. scale = dict(X=0.5,Y=0.5):
# 1. re-scale points (origins of polygons)
# 2. re-scale coordinates (computed from distances) of (zero-origin) polygons
if not (isinstance(scale,dict) and 'X' in scale and 'Y' in scale):
raise ValueError("scale must be a dictionary with entries for 'X' and 'Y'")
rescale = (1/scale['Y'],1/scale['X'])
points = points * np.array(rescale).reshape(1,2)
else:
rescale = (1,1)
if return_labels:
labels = polygons_to_label(disti, points, prob=probi, shape=img_shape, scale_dist=rescale)
else:
labels = None
coord = dist_to_coord(disti, points, scale_dist=rescale)
res_dict = dict(coord=coord, points=points, prob=probi)
# multi class prediction
if prob_class is not None:
prob_class = np.asarray(prob_class)
class_id = np.argmax(prob_class, axis=-1)
res_dict.update(dict(class_prob=prob_class, class_id=class_id))
return labels, res_dict
def _axes_div_by(self, query_axes):
self.config.backbone == 'unet' or _raise(NotImplementedError())
query_axes = axes_check_and_normalize(query_axes)
assert len(self.config.unet_pool) == len(self.config.grid)
div_by = dict(zip(
self.config.axes.replace('C',''),
tuple(p**self.config.unet_n_depth * g for p,g in zip(self.config.unet_pool,self.config.grid))
))
return tuple(div_by.get(a,1) for a in query_axes)
# def _axes_tile_overlap(self, query_axes):
# self.config.backbone == 'unet' or _raise(NotImplementedError())
# query_axes = axes_check_and_normalize(query_axes)
# assert len(self.config.unet_pool) == len(self.config.grid) == len(self.config.unet_kernel_size)
# # TODO: compute this properly when any value of grid > 1
# # all(g==1 for g in self.config.grid) or warnings.warn('FIXME')
# overlap = dict(zip(
# self.config.axes.replace('C',''),
# tuple(tile_overlap(self.config.unet_n_depth + int(np.log2(g)), k, p)
# for p,k,g in zip(self.config.unet_pool,self.config.unet_kernel_size,self.config.grid))
# ))
# return tuple(overlap.get(a,0) for a in query_axes)
@property
def _config_class(self):
return Config2D
|