File size: 19,434 Bytes
0ce1ebe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
import numpy as np
from numba import jit
from tqdm import tqdm
from scipy.optimize import linear_sum_assignment
from skimage.measure import regionprops
from collections import namedtuple
from csbdeep.utils import _raise
matching_criteria = dict()
def label_are_sequential(y):
""" returns true if y has only sequential labels from 1... """
labels = np.unique(y)
return (set(labels)-{0}) == set(range(1,1+labels.max()))
def is_array_of_integers(y):
return isinstance(y,np.ndarray) and np.issubdtype(y.dtype, np.integer)
def _check_label_array(y, name=None, check_sequential=False):
err = ValueError("{label} must be an array of {integers}.".format(
label = 'labels' if name is None else name,
integers = ('sequential ' if check_sequential else '') + 'non-negative integers',
))
is_array_of_integers(y) or _raise(err)
if len(y) == 0:
return True
if check_sequential:
label_are_sequential(y) or _raise(err)
else:
y.min() >= 0 or _raise(err)
return True
def label_overlap(x, y, check=True):
if check:
_check_label_array(x,'x',True)
_check_label_array(y,'y',True)
x.shape == y.shape or _raise(ValueError("x and y must have the same shape"))
return _label_overlap(x, y)
@jit(nopython=True)
def _label_overlap(x, y):
x = x.ravel()
y = y.ravel()
overlap = np.zeros((1+x.max(),1+y.max()), dtype=np.uint)
for i in range(len(x)):
overlap[x[i],y[i]] += 1
return overlap
def _safe_divide(x,y, eps=1e-10):
"""computes a safe divide which returns 0 if y is zero"""
if np.isscalar(x) and np.isscalar(y):
return x/y if np.abs(y)>eps else 0.0
else:
out = np.zeros(np.broadcast(x,y).shape, np.float32)
np.divide(x,y, out=out, where=np.abs(y)>eps)
return out
def intersection_over_union(overlap):
_check_label_array(overlap,'overlap')
if np.sum(overlap) == 0:
return overlap
n_pixels_pred = np.sum(overlap, axis=0, keepdims=True)
n_pixels_true = np.sum(overlap, axis=1, keepdims=True)
return _safe_divide(overlap, (n_pixels_pred + n_pixels_true - overlap))
matching_criteria['iou'] = intersection_over_union
def intersection_over_true(overlap):
_check_label_array(overlap,'overlap')
if np.sum(overlap) == 0:
return overlap
n_pixels_true = np.sum(overlap, axis=1, keepdims=True)
return _safe_divide(overlap, n_pixels_true)
matching_criteria['iot'] = intersection_over_true
def intersection_over_pred(overlap):
_check_label_array(overlap,'overlap')
if np.sum(overlap) == 0:
return overlap
n_pixels_pred = np.sum(overlap, axis=0, keepdims=True)
return _safe_divide(overlap, n_pixels_pred)
matching_criteria['iop'] = intersection_over_pred
def precision(tp,fp,fn):
return tp/(tp+fp) if tp > 0 else 0
def recall(tp,fp,fn):
return tp/(tp+fn) if tp > 0 else 0
def accuracy(tp,fp,fn):
# also known as "average precision" (?)
# -> https://www.kaggle.com/c/data-science-bowl-2018#evaluation
return tp/(tp+fp+fn) if tp > 0 else 0
def f1(tp,fp,fn):
# also known as "dice coefficient"
return (2*tp)/(2*tp+fp+fn) if tp > 0 else 0
def matching(y_true, y_pred, thresh=0.5, criterion='iou', report_matches=False):
"""Calculate detection/instance segmentation metrics between ground truth and predicted label images.
Currently, the following metrics are implemented:
'fp', 'tp', 'fn', 'precision', 'recall', 'accuracy', 'f1', 'criterion', 'thresh', 'n_true', 'n_pred', 'mean_true_score', 'mean_matched_score', 'panoptic_quality'
Corresponding objects of y_true and y_pred are counted as true positives (tp), false positives (fp), and false negatives (fn)
whether their intersection over union (IoU) >= thresh (for criterion='iou', which can be changed)
* mean_matched_score is the mean IoUs of matched true positives
* mean_true_score is the mean IoUs of matched true positives but normalized by the total number of GT objects
* panoptic_quality defined as in Eq. 1 of Kirillov et al. "Panoptic Segmentation", CVPR 2019
Parameters
----------
y_true: ndarray
ground truth label image (integer valued)
y_pred: ndarray
predicted label image (integer valued)
thresh: float
threshold for matching criterion (default 0.5)
criterion: string
matching criterion (default IoU)
report_matches: bool
if True, additionally calculate matched_pairs and matched_scores (note, that this returns even gt-pred pairs whose scores are below 'thresh')
Returns
-------
Matching object with different metrics as attributes
Examples
--------
>>> y_true = np.zeros((100,100), np.uint16)
>>> y_true[10:20,10:20] = 1
>>> y_pred = np.roll(y_true,5,axis = 0)
>>> stats = matching(y_true, y_pred)
>>> print(stats)
Matching(criterion='iou', thresh=0.5, fp=1, tp=0, fn=1, precision=0, recall=0, accuracy=0, f1=0, n_true=1, n_pred=1, mean_true_score=0.0, mean_matched_score=0.0, panoptic_quality=0.0)
"""
_check_label_array(y_true,'y_true')
_check_label_array(y_pred,'y_pred')
y_true.shape == y_pred.shape or _raise(ValueError("y_true ({y_true.shape}) and y_pred ({y_pred.shape}) have different shapes".format(y_true=y_true, y_pred=y_pred)))
criterion in matching_criteria or _raise(ValueError("Matching criterion '%s' not supported." % criterion))
if thresh is None: thresh = 0
thresh = float(thresh) if np.isscalar(thresh) else map(float,thresh)
y_true, _, map_rev_true = relabel_sequential(y_true)
y_pred, _, map_rev_pred = relabel_sequential(y_pred)
overlap = label_overlap(y_true, y_pred, check=False)
scores = matching_criteria[criterion](overlap)
assert 0 <= np.min(scores) <= np.max(scores) <= 1
# ignoring background
scores = scores[1:,1:]
n_true, n_pred = scores.shape
n_matched = min(n_true, n_pred)
def _single(thr):
# not_trivial = n_matched > 0 and np.any(scores >= thr)
not_trivial = n_matched > 0
if not_trivial:
# compute optimal matching with scores as tie-breaker
costs = -(scores >= thr).astype(float) - scores / (2*n_matched)
true_ind, pred_ind = linear_sum_assignment(costs)
assert n_matched == len(true_ind) == len(pred_ind)
match_ok = scores[true_ind,pred_ind] >= thr
tp = np.count_nonzero(match_ok)
else:
tp = 0
fp = n_pred - tp
fn = n_true - tp
# assert tp+fp == n_pred
# assert tp+fn == n_true
# the score sum over all matched objects (tp)
sum_matched_score = np.sum(scores[true_ind,pred_ind][match_ok]) if not_trivial else 0.0
# the score average over all matched objects (tp)
mean_matched_score = _safe_divide(sum_matched_score, tp)
# the score average over all gt/true objects
mean_true_score = _safe_divide(sum_matched_score, n_true)
panoptic_quality = _safe_divide(sum_matched_score, tp+fp/2+fn/2)
stats_dict = dict (
criterion = criterion,
thresh = thr,
fp = fp,
tp = tp,
fn = fn,
precision = precision(tp,fp,fn),
recall = recall(tp,fp,fn),
accuracy = accuracy(tp,fp,fn),
f1 = f1(tp,fp,fn),
n_true = n_true,
n_pred = n_pred,
mean_true_score = mean_true_score,
mean_matched_score = mean_matched_score,
panoptic_quality = panoptic_quality,
)
if bool(report_matches):
if not_trivial:
stats_dict.update (
# int() to be json serializable
matched_pairs = tuple((int(map_rev_true[i]),int(map_rev_pred[j])) for i,j in zip(1+true_ind,1+pred_ind)),
matched_scores = tuple(scores[true_ind,pred_ind]),
matched_tps = tuple(map(int,np.flatnonzero(match_ok))),
)
else:
stats_dict.update (
matched_pairs = (),
matched_scores = (),
matched_tps = (),
)
return namedtuple('Matching',stats_dict.keys())(*stats_dict.values())
return _single(thresh) if np.isscalar(thresh) else tuple(map(_single,thresh))
def matching_dataset(y_true, y_pred, thresh=0.5, criterion='iou', by_image=False, show_progress=True, parallel=False):
"""matching metrics for list of images, see `stardist.matching.matching`
"""
len(y_true) == len(y_pred) or _raise(ValueError("y_true and y_pred must have the same length."))
return matching_dataset_lazy (
tuple(zip(y_true,y_pred)), thresh=thresh, criterion=criterion, by_image=by_image, show_progress=show_progress, parallel=parallel,
)
def matching_dataset_lazy(y_gen, thresh=0.5, criterion='iou', by_image=False, show_progress=True, parallel=False):
expected_keys = set(('fp', 'tp', 'fn', 'precision', 'recall', 'accuracy', 'f1', 'criterion', 'thresh', 'n_true', 'n_pred', 'mean_true_score', 'mean_matched_score', 'panoptic_quality'))
single_thresh = False
if np.isscalar(thresh):
single_thresh = True
thresh = (thresh,)
tqdm_kwargs = {}
tqdm_kwargs['disable'] = not bool(show_progress)
if int(show_progress) > 1:
tqdm_kwargs['total'] = int(show_progress)
# compute matching stats for every pair of label images
if parallel:
from concurrent.futures import ThreadPoolExecutor
fn = lambda pair: matching(*pair, thresh=thresh, criterion=criterion, report_matches=False)
with ThreadPoolExecutor() as pool:
stats_all = tuple(pool.map(fn, tqdm(y_gen,**tqdm_kwargs)))
else:
stats_all = tuple (
matching(y_t, y_p, thresh=thresh, criterion=criterion, report_matches=False)
for y_t,y_p in tqdm(y_gen,**tqdm_kwargs)
)
# accumulate results over all images for each threshold separately
n_images, n_threshs = len(stats_all), len(thresh)
accumulate = [{} for _ in range(n_threshs)]
for stats in stats_all:
for i,s in enumerate(stats):
acc = accumulate[i]
for k,v in s._asdict().items():
if k == 'mean_true_score' and not bool(by_image):
# convert mean_true_score to "sum_matched_score"
acc[k] = acc.setdefault(k,0) + v * s.n_true
else:
try:
acc[k] = acc.setdefault(k,0) + v
except TypeError:
pass
# normalize/compute 'precision', 'recall', 'accuracy', 'f1'
for thr,acc in zip(thresh,accumulate):
set(acc.keys()) == expected_keys or _raise(ValueError("unexpected keys"))
acc['criterion'] = criterion
acc['thresh'] = thr
acc['by_image'] = bool(by_image)
if bool(by_image):
for k in ('precision', 'recall', 'accuracy', 'f1', 'mean_true_score', 'mean_matched_score', 'panoptic_quality'):
acc[k] /= n_images
else:
tp, fp, fn, n_true = acc['tp'], acc['fp'], acc['fn'], acc['n_true']
sum_matched_score = acc['mean_true_score']
mean_matched_score = _safe_divide(sum_matched_score, tp)
mean_true_score = _safe_divide(sum_matched_score, n_true)
panoptic_quality = _safe_divide(sum_matched_score, tp+fp/2+fn/2)
acc.update(
precision = precision(tp,fp,fn),
recall = recall(tp,fp,fn),
accuracy = accuracy(tp,fp,fn),
f1 = f1(tp,fp,fn),
mean_true_score = mean_true_score,
mean_matched_score = mean_matched_score,
panoptic_quality = panoptic_quality,
)
accumulate = tuple(namedtuple('DatasetMatching',acc.keys())(*acc.values()) for acc in accumulate)
return accumulate[0] if single_thresh else accumulate
# copied from scikit-image master for now (remove when part of a release)
def relabel_sequential(label_field, offset=1):
"""Relabel arbitrary labels to {`offset`, ... `offset` + number_of_labels}.
This function also returns the forward map (mapping the original labels to
the reduced labels) and the inverse map (mapping the reduced labels back
to the original ones).
Parameters
----------
label_field : numpy array of int, arbitrary shape
An array of labels, which must be non-negative integers.
offset : int, optional
The return labels will start at `offset`, which should be
strictly positive.
Returns
-------
relabeled : numpy array of int, same shape as `label_field`
The input label field with labels mapped to
{offset, ..., number_of_labels + offset - 1}.
The data type will be the same as `label_field`, except when
offset + number_of_labels causes overflow of the current data type.
forward_map : numpy array of int, shape ``(label_field.max() + 1,)``
The map from the original label space to the returned label
space. Can be used to re-apply the same mapping. See examples
for usage. The data type will be the same as `relabeled`.
inverse_map : 1D numpy array of int, of length offset + number of labels
The map from the new label space to the original space. This
can be used to reconstruct the original label field from the
relabeled one. The data type will be the same as `relabeled`.
Notes
-----
The label 0 is assumed to denote the background and is never remapped.
The forward map can be extremely big for some inputs, since its
length is given by the maximum of the label field. However, in most
situations, ``label_field.max()`` is much smaller than
``label_field.size``, and in these cases the forward map is
guaranteed to be smaller than either the input or output images.
Examples
--------
>>> from skimage.segmentation import relabel_sequential
>>> label_field = np.array([1, 1, 5, 5, 8, 99, 42])
>>> relab, fw, inv = relabel_sequential(label_field)
>>> relab
array([1, 1, 2, 2, 3, 5, 4])
>>> fw
array([0, 1, 0, 0, 0, 2, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5])
>>> inv
array([ 0, 1, 5, 8, 42, 99])
>>> (fw[label_field] == relab).all()
True
>>> (inv[relab] == label_field).all()
True
>>> relab, fw, inv = relabel_sequential(label_field, offset=5)
>>> relab
array([5, 5, 6, 6, 7, 9, 8])
"""
offset = int(offset)
if offset <= 0:
raise ValueError("Offset must be strictly positive.")
if np.min(label_field) < 0:
raise ValueError("Cannot relabel array that contains negative values.")
max_label = int(label_field.max()) # Ensure max_label is an integer
if not np.issubdtype(label_field.dtype, np.integer):
new_type = np.min_scalar_type(max_label)
label_field = label_field.astype(new_type)
labels = np.unique(label_field)
labels0 = labels[labels != 0]
new_max_label = offset - 1 + len(labels0)
new_labels0 = np.arange(offset, new_max_label + 1)
output_type = label_field.dtype
required_type = np.min_scalar_type(new_max_label)
if np.dtype(required_type).itemsize > np.dtype(label_field.dtype).itemsize:
output_type = required_type
forward_map = np.zeros(max_label + 1, dtype=output_type)
forward_map[labels0] = new_labels0
inverse_map = np.zeros(new_max_label + 1, dtype=output_type)
inverse_map[offset:] = labels0
relabeled = forward_map[label_field]
return relabeled, forward_map, inverse_map
def group_matching_labels(ys, thresh=1e-10, criterion='iou'):
"""
Group matching objects (i.e. assign the same label id) in a
list of label images (e.g. consecutive frames of a time-lapse).
Uses function `matching` (with provided `criterion` and `thresh`) to
iteratively/greedily match and group objects/labels in consecutive images of `ys`.
To that end, matching objects are grouped together by assigning the same label id,
whereas unmatched objects are assigned a new label id.
At the end of this process, each label group will have been assigned a unique id.
Note that the label images `ys` will not be modified. Instead, they will initially
be duplicated and converted to data type `np.int32` before objects are grouped and the result
is returned. (Note that `np.int32` limits the number of label groups to at most 2147483647.)
Example
-------
import numpy as np
from stardist.data import test_image_nuclei_2d
from stardist.matching import group_matching_labels
_y = test_image_nuclei_2d(return_mask=True)[1]
labels = np.stack([_y, 2*np.roll(_y,10)], axis=0)
labels_new = group_matching_labels(labels)
Parameters
----------
ys : np.ndarray or list/tuple of np.ndarray
list/array of integer labels (2D or 3D)
"""
# check 'ys' without making a copy
len(ys) > 1 or _raise(ValueError("'ys' must have 2 or more entries"))
if isinstance(ys, np.ndarray):
_check_label_array(ys, 'ys')
ys.ndim > 1 or _raise(ValueError("'ys' must be at least 2-dimensional"))
ys_grouped = np.empty_like(ys, dtype=np.int32)
else:
all(_check_label_array(y, 'ys') for y in ys) or _raise(ValueError("'ys' must be a list of label images"))
all(y.shape==ys[0].shape for y in ys) or _raise(ValueError("all label images must have the same shape"))
ys_grouped = np.empty((len(ys),)+ys[0].shape, dtype=np.int32)
def _match_single(y_prev, y, next_id):
y = y.astype(np.int32, copy=False)
res = matching(y_prev, y, report_matches=True, thresh=thresh, criterion=criterion)
# relabel dict (for matching labels) that maps label ids from y -> y_prev
relabel = dict(reversed(res.matched_pairs[i]) for i in res.matched_tps)
y_grouped = np.zeros_like(y)
for r in regionprops(y):
m = (y[r.slice] == r.label)
if r.label in relabel:
y_grouped[r.slice][m] = relabel[r.label]
else:
y_grouped[r.slice][m] = next_id
next_id += 1
return y_grouped, next_id
ys_grouped[0] = ys[0]
next_id = ys_grouped[0].max() + 1
for i in range(len(ys)-1):
ys_grouped[i+1], next_id = _match_single(ys_grouped[i], ys[i+1], next_id)
return ys_grouped
def _shuffle_labels(y):
_check_label_array(y, 'y')
y2 = np.zeros_like(y)
ids = tuple(set(np.unique(y)) - {0})
relabel = dict(zip(ids,np.random.permutation(ids)))
for r in regionprops(y):
m = (y[r.slice] == r.label)
y2[r.slice][m] = relabel[r.label]
return y2
|