File size: 19,488 Bytes
0ce1ebe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
from pathlib import Path
from pkg_resources import get_distribution
from zipfile import ZipFile
import numpy as np
import tempfile
from distutils.version import LooseVersion
from csbdeep.utils import axes_check_and_normalize, normalize, _raise
DEEPIMAGEJ_MACRO = \
"""
//*******************************************************************
// Date: July-2021
// Credits: StarDist, DeepImageJ
// URL:
// https://github.com/stardist/stardist
// https://deepimagej.github.io/deepimagej
// This macro was adapted from
// https://github.com/deepimagej/imagej-macros/blob/648caa867f6ccb459649d4d3799efa1e2e0c5204/StarDist2D_Post-processing.ijm
// Please cite the respective contributions when using this code.
//*******************************************************************
// Macro to run StarDist postprocessing on 2D images.
// StarDist and deepImageJ plugins need to be installed.
// The macro assumes that the image to process is a stack in which
// the first channel corresponds to the object probability map
// and the remaining channels are the radial distances from each
// pixel to the object boundary.
//*******************************************************************
// Get the name of the image to call it
getDimensions(width, height, channels, slices, frames);
name=getTitle();
probThresh={probThresh};
nmsThresh={nmsThresh};
// Isolate the detection probability scores
run("Make Substack...", "channels=1");
rename("scores");
// Isolate the oriented distances
run("Fire");
selectWindow(name);
run("Delete Slice", "delete=channel");
selectWindow(name);
run("Properties...", "channels=" + maxOf(channels, slices) - 1 + " slices=1 frames=1 pixel_width=1.0000 pixel_height=1.0000 voxel_depth=1.0000");
rename("distances");
run("royal");
// Run StarDist plugin
run("Command From Macro", "command=[de.csbdresden.stardist.StarDist2DNMS], args=['prob':'scores', 'dist':'distances', 'probThresh':'" + probThresh + "', 'nmsThresh':'" + nmsThresh + "', 'outputType':'Both', 'excludeBoundary':'2', 'roiPosition':'Stack', 'verbose':'false'], process=[false]");
"""
def _import(error=True):
try:
from importlib_metadata import metadata
from bioimageio.core.build_spec import build_model # type: ignore
import xarray as xr
import bioimageio.core # type: ignore
except ImportError:
if error:
raise RuntimeError(
"Required libraries are missing for bioimage.io model export.\n"
"Please install StarDist as follows: pip install 'stardist[bioimageio]'\n"
"(You do not need to uninstall StarDist first.)"
)
else:
return None
return metadata, build_model, bioimageio.core, xr
def _create_stardist_dependencies(outdir):
from ruamel.yaml import YAML
from tensorflow import __version__ as tf_version
from . import __version__ as stardist_version
pkg_info = get_distribution("stardist")
# dependencies that start with the name "bioimageio" will be added as conda dependencies
reqs_conda = [str(req) for req in pkg_info.requires(extras=['bioimageio']) if str(req).startswith('bioimageio')]
# only stardist and tensorflow as pip dependencies
tf_major, tf_minor = LooseVersion(tf_version).version[:2]
reqs_pip = (f"stardist>={stardist_version}", f"tensorflow>={tf_major}.{tf_minor},<{tf_major+1}")
# conda environment
env = dict(
name = 'stardist',
channels = ['defaults', 'conda-forge'],
dependencies = [
('python>=3.7,<3.8' if tf_major == 1 else 'python>=3.7'),
*reqs_conda,
'pip', {'pip': reqs_pip},
],
)
yaml = YAML(typ='safe')
path = outdir / "environment.yaml"
with open(path, "w") as f:
yaml.dump(env, f)
return f"conda:{path}"
def _create_stardist_doc(outdir):
doc_path = outdir / "README.md"
text = (
"# StarDist Model\n"
"This is a model for object detection with star-convex shapes.\n"
"Please see the [StarDist repository](https://github.com/stardist/stardist) for details."
)
with open(doc_path, "w") as f:
f.write(text)
return doc_path
def _get_stardist_metadata(outdir, model):
metadata, *_ = _import()
package_data = metadata("stardist")
doi_2d = "https://doi.org/10.1007/978-3-030-00934-2_30"
doi_3d = "https://doi.org/10.1109/WACV45572.2020.9093435"
authors = {
'Martin Weigert': dict(name='Martin Weigert', github_user='maweigert'),
'Uwe Schmidt': dict(name='Uwe Schmidt', github_user='uschmidt83'),
}
data = dict(
description=package_data["Summary"],
authors=list(authors.get(name.strip(),dict(name=name.strip())) for name in package_data["Author"].split(",")),
git_repo=package_data["Home-Page"],
license=package_data["License"],
dependencies=_create_stardist_dependencies(outdir),
cite=[{"text": "Cell Detection with Star-Convex Polygons", "doi": doi_2d},
{"text": "Star-convex Polyhedra for 3D Object Detection and Segmentation in Microscopy", "doi": doi_3d}],
tags=[
'fluorescence-light-microscopy', 'whole-slide-imaging', 'other', # modality
f'{model.config.n_dim}d', # dims
'cells', 'nuclei', # content
'tensorflow', # framework
'fiji', # software
'unet', # network
'instance-segmentation', 'object-detection', # task
'stardist',
],
covers=["https://raw.githubusercontent.com/stardist/stardist/master/images/stardist_logo.jpg"],
documentation=_create_stardist_doc(outdir),
)
return data
def _predict_tf(model_path, test_input):
import tensorflow as tf
from csbdeep.utils.tf import IS_TF_1
# need to unzip the model assets
model_assets = model_path.parent / "tf_model"
with ZipFile(model_path, "r") as f:
f.extractall(model_assets)
if IS_TF_1:
# make a new graph, i.e. don't use the global default graph
with tf.Graph().as_default():
with tf.Session() as sess:
tf_model = tf.saved_model.load_v2(str(model_assets))
x = tf.convert_to_tensor(test_input, dtype=tf.float32)
model = tf_model.signatures["serving_default"]
y = model(x)
sess.run(tf.global_variables_initializer())
output = sess.run(y["output"])
else:
tf_model = tf.saved_model.load(str(model_assets))
x = tf.convert_to_tensor(test_input, dtype=tf.float32)
model = tf_model.signatures["serving_default"]
y = model(x)
output = y["output"].numpy()
return output
def _get_weights_and_model_metadata(outdir, model, test_input, test_input_axes, test_input_norm_axes, mode, min_percentile, max_percentile):
# get the path to the exported model assets (saved in outdir)
if mode == "keras_hdf5":
raise NotImplementedError("Export to keras format is not supported yet")
elif mode == "tensorflow_saved_model_bundle":
assets_uri = outdir / "TF_SavedModel.zip"
model_csbdeep = model.export_TF(assets_uri, single_output=True, upsample_grid=True)
else:
raise ValueError(f"Unsupported mode: {mode}")
# to force "inputs.data_type: float32" in the spec (bonus: disables normalization warning in model._predict_setup)
test_input = test_input.astype(np.float32)
# convert test_input to axes_net semantics and shape, also resize if necessary (to adhere to axes_net_div_by)
test_input, axes_img, axes_net, axes_net_div_by, *_ = model._predict_setup(
img=test_input,
axes=test_input_axes,
normalizer=None,
n_tiles=None,
show_tile_progress=False,
predict_kwargs={},
)
# normalization axes string and numeric indices
axes_norm = set(axes_net).intersection(set(axes_check_and_normalize(test_input_norm_axes, disallowed='S')))
axes_norm = "".join(a for a in axes_net if a in axes_norm) # preserve order of axes_net
axes_norm_num = tuple(axes_net.index(a) for a in axes_norm)
# normalize input image
test_input_norm = normalize(test_input, pmin=min_percentile, pmax=max_percentile, axis=axes_norm_num)
net_axes_in = axes_net.lower()
net_axes_out = axes_check_and_normalize(model._axes_out).lower()
ndim_tensor = len(net_axes_out) + 1
input_min_shape = list(axes_net_div_by)
input_min_shape[axes_net.index('C')] = model.config.n_channel_in
input_step = list(axes_net_div_by)
input_step[axes_net.index('C')] = 0
# add the batch axis to shape and step
input_min_shape = [1] + input_min_shape
input_step = [0] + input_step
# the axes strings in bioimageio convention
input_axes = "b" + net_axes_in.lower()
output_axes = "b" + net_axes_out.lower()
if mode == "keras_hdf5":
output_names = ("prob", "dist") + (("class_prob",) if model._is_multiclass() else ())
output_n_channels = (1, model.config.n_rays,) + ((1,) if model._is_multiclass() else ())
# the output shape is computed from the input shape using
# output_shape[i] = output_scale[i] * input_shape[i] + 2 * output_offset[i]
output_scale = [1]+list(1/g for g in model.config.grid) + [0]
output_offset = [0]*(ndim_tensor)
elif mode == "tensorflow_saved_model_bundle":
if model._is_multiclass():
raise NotImplementedError("Tensorflow SavedModel not supported for multiclass models yet")
# regarding input/output names: https://github.com/CSBDeep/CSBDeep/blob/b0d2f5f344ebe65a9b4c3007f4567fe74268c813/csbdeep/utils/tf.py#L193-L194
input_names = ["input"]
output_names = ["output"]
output_n_channels = (1 + model.config.n_rays,)
# the output shape is computed from the input shape using
# output_shape[i] = output_scale[i] * input_shape[i] + 2 * output_offset[i]
# same shape as input except for the channel dimension
output_scale = [1]*(ndim_tensor)
output_scale[output_axes.index("c")] = 0
# no offset, except for the input axes, where it is output channel / 2
output_offset = [0.0]*(ndim_tensor)
output_offset[output_axes.index("c")] = output_n_channels[0] / 2.0
assert all(s in (0, 1) for s in output_scale), "halo computation assumption violated"
halo = model._axes_tile_overlap(output_axes.replace('b', 's'))
halo = [int(np.ceil(v/8)*8) for v in halo] # optional: round up to be divisible by 8
# the output shape needs to be valid after cropping the halo, so we add the halo to the input min shape
input_min_shape = [ms + 2 * ha for ms, ha in zip(input_min_shape, halo)]
# make sure the input min shape is still divisible by the min axis divisor
input_min_shape = input_min_shape[:1] + [ms + (-ms % div_by) for ms, div_by in zip(input_min_shape[1:], axes_net_div_by)]
assert all(ms % div_by == 0 for ms, div_by in zip(input_min_shape[1:], axes_net_div_by))
metadata, *_ = _import()
package_data = metadata("stardist")
is_2D = model.config.n_dim == 2
weights_file = outdir / "stardist_weights.h5"
model.keras_model.save_weights(str(weights_file))
config = dict(
stardist=dict(
python_version=package_data["Version"],
thresholds=dict(model.thresholds._asdict()),
weights=weights_file.name,
config=vars(model.config),
)
)
if is_2D:
macro_file = outdir / "stardist_postprocessing.ijm"
with open(str(macro_file), 'w', encoding='utf-8') as f:
f.write(DEEPIMAGEJ_MACRO.format(probThresh=model.thresholds.prob, nmsThresh=model.thresholds.nms))
config['stardist'].update(postprocessing_macro=macro_file.name)
n_inputs = len(input_names)
assert n_inputs == 1
input_config = dict(
input_names=input_names,
input_min_shape=[input_min_shape],
input_step=[input_step],
input_axes=[input_axes],
input_data_range=[["-inf", "inf"]],
preprocessing=[[dict(
name="scale_range",
kwargs=dict(
mode="per_sample",
axes=axes_norm.lower(),
min_percentile=min_percentile,
max_percentile=max_percentile,
))]]
)
n_outputs = len(output_names)
output_config = dict(
output_names=output_names,
output_data_range=[["-inf", "inf"]] * n_outputs,
output_axes=[output_axes] * n_outputs,
output_reference=[input_names[0]] * n_outputs,
output_scale=[output_scale] * n_outputs,
output_offset=[output_offset] * n_outputs,
halo=[halo] * n_outputs
)
in_path = outdir / "test_input.npy"
np.save(in_path, test_input[np.newaxis])
if mode == "tensorflow_saved_model_bundle":
test_outputs = _predict_tf(assets_uri, test_input_norm[np.newaxis])
else:
test_outputs = model.predict(test_input_norm)
# out_paths = []
# for i, out in enumerate(test_outputs):
# p = outdir / f"test_output{i}.npy"
# np.save(p, out)
# out_paths.append(p)
assert n_outputs == 1
out_paths = [outdir / "test_output.npy"]
np.save(out_paths[0], test_outputs)
from tensorflow import __version__ as tf_version
data = dict(weight_uri=assets_uri, test_inputs=[in_path], test_outputs=out_paths,
config=config, tensorflow_version=tf_version)
data.update(input_config)
data.update(output_config)
_files = [str(weights_file)]
if is_2D:
_files.append(str(macro_file))
data.update(attachments=dict(files=_files))
return data
def export_bioimageio(
model,
outpath,
test_input,
test_input_axes=None,
test_input_norm_axes='ZYX',
name=None,
mode="tensorflow_saved_model_bundle",
min_percentile=1.0,
max_percentile=99.8,
overwrite_spec_kwargs=None,
):
"""Export stardist model into bioimage.io format, https://github.com/bioimage-io/spec-bioimage-io.
Parameters
----------
model: StarDist2D, StarDist3D
the model to convert
outpath: str, Path
where to save the model
test_input: np.ndarray
input image for generating test data
test_input_axes: str or None
the axes of the test input, for example 'YX' for a 2d image or 'ZYX' for a 3d volume
using None assumes that axes of test_input are the same as those of model
test_input_norm_axes: str
the axes of the test input which will be jointly normalized, for example 'ZYX' for all spatial dimensions ('Z' ignored for 2D input)
use 'ZYXC' to also jointly normalize channels (e.g. for RGB input images)
name: str
the name of this model (default: None)
if None, uses the (folder) name of the model (i.e. `model.name`)
mode: str
the export type for this model (default: "tensorflow_saved_model_bundle")
min_percentile: float
min percentile to be used for image normalization (default: 1.0)
max_percentile: float
max percentile to be used for image normalization (default: 99.8)
overwrite_spec_kwargs: dict or None
spec keywords that should be overloaded (default: None)
"""
_, build_model, *_ = _import()
from .models import StarDist2D, StarDist3D
isinstance(model, (StarDist2D, StarDist3D)) or _raise(ValueError("not a valid model"))
0 <= min_percentile < max_percentile <= 100 or _raise(ValueError("invalid percentile values"))
if name is None:
name = model.name
name = str(name)
outpath = Path(outpath)
if outpath.suffix == "":
outdir = outpath
zip_path = outdir / f"{name}.zip"
elif outpath.suffix == ".zip":
outdir = outpath.parent
zip_path = outpath
else:
raise ValueError(f"outpath has to be a folder or zip file, got {outpath}")
outdir.mkdir(exist_ok=True, parents=True)
with tempfile.TemporaryDirectory() as _tmp_dir:
tmp_dir = Path(_tmp_dir)
kwargs = _get_stardist_metadata(tmp_dir, model)
model_kwargs = _get_weights_and_model_metadata(tmp_dir, model, test_input, test_input_axes, test_input_norm_axes, mode,
min_percentile=min_percentile, max_percentile=max_percentile)
kwargs.update(model_kwargs)
if overwrite_spec_kwargs is not None:
kwargs.update(overwrite_spec_kwargs)
build_model(name=name, output_path=zip_path, add_deepimagej_config=(model.config.n_dim==2), root=tmp_dir, **kwargs)
print(f"\nbioimage.io model with name '{name}' exported to '{zip_path}'")
def import_bioimageio(source, outpath):
"""Import stardist model from bioimage.io format, https://github.com/bioimage-io/spec-bioimage-io.
Load a model in bioimage.io format from the given `source` (e.g. path to zip file, URL)
and convert it to a regular stardist model, which will be saved in the folder `outpath`.
Parameters
----------
source: str, Path
bioimage.io resource (e.g. path, URL)
outpath: str, Path
folder to save the stardist model (must not exist previously)
Returns
-------
StarDist2D or StarDist3D
stardist model loaded from `outpath`
"""
import shutil, uuid
from csbdeep.utils import save_json
from .models import StarDist2D, StarDist3D
*_, bioimageio_core, _ = _import()
outpath = Path(outpath)
not outpath.exists() or _raise(FileExistsError(f"'{outpath}' already exists"))
with tempfile.TemporaryDirectory() as _tmp_dir:
tmp_dir = Path(_tmp_dir)
# download the full model content to a temporary folder
zip_path = tmp_dir / f"{str(uuid.uuid4())}.zip"
bioimageio_core.export_resource_package(source, output_path=zip_path)
with ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(tmp_dir)
zip_path.unlink()
rdf_path = tmp_dir / "rdf.yaml"
biomodel = bioimageio_core.load_resource_description(rdf_path)
# read the stardist specific content
'stardist' in biomodel.config or _raise(RuntimeError("bioimage.io model not compatible"))
config = biomodel.config['stardist']['config']
thresholds = biomodel.config['stardist']['thresholds']
weights = biomodel.config['stardist']['weights']
# make sure that the keras weights are in the attachments
weights_file = None
for f in biomodel.attachments.files:
if f.name == weights and f.exists():
weights_file = f
break
weights_file is not None or _raise(FileNotFoundError(f"couldn't find weights file '{weights}'"))
# save the config and threshold to json, and weights to hdf5 to enable loading as stardist model
# copy bioimageio files to separate sub-folder
outpath.mkdir(parents=True)
save_json(config, str(outpath / 'config.json'))
save_json(thresholds, str(outpath / 'thresholds.json'))
shutil.copy(str(weights_file), str(outpath / "weights_bioimageio.h5"))
shutil.copytree(str(tmp_dir), str(outpath / "bioimageio"))
model_class = (StarDist2D if config['n_dim'] == 2 else StarDist3D)
model = model_class(None, outpath.name, basedir=str(outpath.parent))
return model
|